High Efficiency Low Cost Electrochemical Ammonia Production

Julie N. Renner, Steve Szymanski, Proton OnSite Lauren Greenlee, NIST/University of Arkansas Andrew Herring, Colorado School of Mines Douglas Tiffany, University of Minnesota

> NH3 Fuel Conference Chicago, IL September 22nd 2015

Outline

Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

Proton OnSite Overview

- Core technology in PEM electrolysis
- Founded in 1996, >2200 fielded units, 15 MW capacity shipped
- Continuing to scale manufacturing and output to address energy markets
- MW scale electrolyzer system now available

Electrolyzer Applications:

Renewable Energy Storage

Power Plants

Heat Treating

Semiconductors

Biogas

Laboratories

Government

Headquarters in Wallingford, CT

Proton Fueling Station

Membrane-based Electrolysis

- "PEM" electrode = Proton Exchange
 Membrane
- Reaction occurs across a thin MEA
- Assembled into compact stacks and systems

Hydrogen Generation Mode

Scalable Technology

From Single to Multi-Stack Systems

HOGEN® C Series

HOGEN® M Series

GC

28 cm² 0.05 Nm³/hr 0.01 kg/day

86 cm² 2 Nm³/hr 4.3 kg/day

210 cm² 10 Nm³/hr 21.6 kg/day

680 cm² 50 Nm³/hr 100 kg/day

How Much Hydrogen Can We Make?

\$/kW vs. S-Series	100%	43%	28%	13%E
	S-Series	H-Series	C-Series	Megawatt
Product Type			11	
Year Introduced	2000	2004	2012	2015
Units Sold	450+	200+	22+	NA
H2 output (Nm³/hr)	1	6	30	200–400
Generates	1 Day	1 Day	1 Week	1 Day
Replaces				
	Six Pack	Tube Trailer	Jumbo Tube Trailer	Jumbo Tube Trailer

Outline

Proton OnSite Overview

Results and Future Directions

Ammonia Production History

1899: Crooks raises alarm 1913: Haber-Bosch **mid 1800's**: mining

Nitrate salt mining²

Fritz Haber

Carl Bosch

(1) History Today Volume 30 Issue 6 June 1980

(2) Dept. of the Interior US Geological Survey Bulletin 523, 1912

8

Haber-Bosch (HB) Process

- H₂ obtained from fossil fuels, high temp and high pressure, high capital cost
- Inefficient (consumes ~1% of the worlds energy)

 Ammonia Production: Moving Towards Maximum Efficiency and Lower GHG Emissions http://www.fertilizer.org/, 2014.
- High-polluting (~3% GHG emissions)

Feeding the Earth, International Fertilizer Industry Association, http://www.fertilizer.org/, 2009.

Vision for Electrochemical Ammonia Production

Ammonia Synthesis

Industrial Uses: chemical synthesis, emissions scrubbing, refrigeration

J.N. Renner, L.F. Greenlee, A.M. Herring, K.E. Ayers, Electrochemical Synthesis of Ammonia: A Low Pressure, Low Temperature Approach, in: The Electrochemical Society Interface, Summer 2015.

- Electrically driven process for low temp/pressure/emissions
- Compatible with intermittent operation
- High regional demand for fertilizer co-located with renewables

Wind to Ammonia Pilot Plant:

University of Minnesota / Morris (West Central Research & Outreach Center)

Scalable Technology

Ammonia Production Technology Plan

Bench Scale Size: 25 cm²

GC Size: 28-84 cm²

M Series

PHASE I

Proof-of-Concept Phase

Bench Scale

Targets

Current Efficiency: > 1%

PHASE II

Breadboard Phase Garden Capacity

(100 g/year)

Targets

Current Efficiency: 10%

Current Density: 10 mA/cm²

FUTURE

Product Phase

Small Farm

 $(260 \, acres - 12,500 \, kg/year)$

Targets

Current Efficiency: 50%

Current Density: 50 mA/cm²

- Enables networks of distributed scale and near point-of-use
- Proton developing MW-scale

A 5 MW system could produce 10 tons/day ammonia

(@ 500 mA/cm², 50% efficiency, 1.5 V)

Background/Key Obstacles

R. Lan, J.T.S. Irvine, S. Tao, Scientific Reports, 3 (2013).

- Key obstacle: selective catalyst
 - low NH₃ overpotential
 - high H₂ overpotential

- PEM demonstrated feasibility
- At 1.5 V and below, need ~50% Faradaic efficiency to match HB

A volcano plot predicting metal performance for nitrogen electroreduction

E. Skúlason, et. al, Phys. Chem. Chem. Phys., 14 (2012).

AEM-based Approach

- **More Catalyst Options:**
- Non-noble
- Blended metals
- Core-shell
- Ligands
 - AEM enables wider range of efficient catalysts vs. PEM
 - Lower cost materials of construction in alkaline environment

Outline

Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

Ammonia Generation Rig

Ammonia Capture via Acid Trap and Determination via Colorimetric Assay:

Increasing ammonia concentration

- Design reviewed by senior engineers, safety qualified
- Test bed to compare multiple configurations and catalysts
- Sensitive colorimetric assay for ammonia (verified independently)

Membrane Screening

- 9X greater diffusion through higher IEC material
- May indicate hydrophobicity/swelling in limiting ammonia crossover
- Good performing membranes have an order of magnitude less crossover than baseline production rates
 - Commercial baseline material good starting point

Commercial Catalyst Screening

Conditions: 1.3 V, 0.5 hours of operation

- Platinum consistently had <1% efficiencies (similar to PEM), performance degrades after an hour
- Order of magnitude increase in efficiencies with non-noble metal
- Increased efficiency seems to correlate with decreased production
 - Indicates competition between HER and NH₃ production

Effect of Voltage

- Increasing production rate and efficiency with increasing potential using Fe (opposite effect with Ni)
- High current efficiencies possible with Ni
- Provides further evidence for competition between HER and NH₃ production

Catalyst Synthesis

- Exquisite control over nanoparticle morphologies for Ni and Fe compounds
- Compared to commercial Pt

Nanoparticle performance

Conditions: 1.2 V, 1 hour of operation

- Performance of Ni-Fe materials are affected by surface area
- LSA more Fe like
- HAS more Ni like
- Ni materials have higher stability and efficiency
- Pt performance degrades

Comparison

Process	Catalyst	Energy Consumption (kwh/kg NH ₃)	Ammonia Production Rate (mol NH ₃ /cm ² s)	Faradaic Efficiency (%)	Cell Potential (V)	Temp (°C)
Haber-Bosch ¹	Typically Fe-based	13.2	N/A	N/A	N/A	300- 500
PEM Electrochemical ²	Pt	1600-3600	6.20 X 10 ⁻¹⁰ – 2.80 X 10 ⁻¹⁰	0.16-0.36	1.2-1.4	25
Mixed Electrolyte Electrochemical ³	perovskite oxide	130 - 1140	3.1 X 10 ⁻¹¹ – 1.71 X 10 ⁻¹⁰	0.5-4.5	1.2-1.4	400
Molten Hydroxide Electrochemical ⁴	Fe ₂ O ₃	16	2.40 X 10 ⁻⁹	35	1.2	200
AEM Electrochemical	Pt, Fe, Ni, FeNi	14-520	1.33 X 10 ⁻¹² – 3.80 X 10 ⁻¹²	1.1 - 41	1.2	50

- Orders of magnitude increase in current efficiency compared to PEM
- Similar efficiencies at lower temperatures than molten hydroxide
- Production rates need to be increased

⁽¹⁾ W. Leighty, The Leighty Foundation, Energy Storage with Anhydrous Ammonia: Comparison with other Energy Storage, October 2008.

⁽³⁾ R. Lan, S.W. Tao, RSC Adv., 3 (2013) 18016-18021.

Conclusions

- The developed system provided an adequate test bed
- Proof-of-concept was established for AEM-based ammonia generation
- An order of magnitude increase in efficiency was observed compared literature at similar conditions
- AEM-based technology is promising for efficient ammonia production at low temperatures

How do we achieve our vision?

Phase II Work:

- New ammonia rig
- More detailed product analysis
- NiFe and other nanocatalysts
- Membrane/ionomer/electrode optimization
- Demonstrate increased current density and durability
- Technoeconomic analysis

Future Work:

- Fundamental studies on reaction mechanisms
- Bio-inspired catalysts for selectivity
- Purification and systems work
- Scale-up

Acknowledgements

Proton OnSite:

- Kathy Ayers
- Nemanja Danilovic
- Luke Wiles (engineering asst.)
- Arie Havasov (co-op)
- Wolfgang Grassmann (co-op)

Collaborators:

Lauren Greenlee
 NIST/Univ. of Arkansas

Andrew Herring
 Colorado School of Mines

Douglas Tiffany
 University of Minnesota

Questions and Discussion

Funding:

- USDA Phase I/II SBIR
- NSF/ASEE Postdoctoral Fellowship

