

Ammonia Transformation and Utilization

<u>Henry Brandhorst¹</u>, Bruce Tatarchuk², Don Cahela², Troy Barron³, Martin Baltazar-Lopez¹

¹Space Research Institute ²Center for Microfibrous Materials Manufacturing Auburn University ³IntraMicron, Inc.

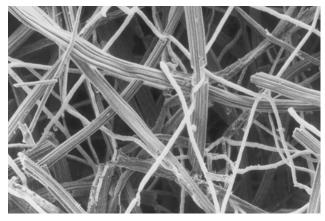
AMMONIA – A sustainable, emission-free fuel 4th Annual Conference October 15 & 16, 2007

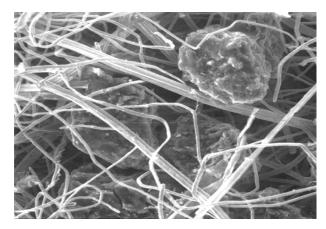
Auburn University

- * Ammonia has many desirable features:
 - » Storable with high hydrogen content (17.6%)
 - » Safely transportable
- * Ammonia can be synthesized from water and air
 - » You don't need fossil fuels or carbon sources
 - » Eliminates greenhouse gases (CO₂, CH₄, etc.)
- * NH_3 can be burned directly
 - » Stirling, diesel or IC engines
- * NH_3 can be reformed into H_2
 - » Source of fuel for Stirling or IC engine or fuel cells
 - » But NH₃ poisons PEM FCs

Background

- As part of the effort to examine the benefits of ammonia for terrestrial applications, our first step was to:
 - » Develop processes for catalytic reformation of NH₃
 - » Utilize microfibrous materials to encapsulate reforming catalyst
- * After demonstrating reformation of NH_3
 - » Studies were conducted on the stability and feasibility of burning NH₃ and burning NH₃ with synthetic reformate
 - » Given success at that point, demonstrate an NH₃ catalytic burner
- * As part of the process
 - » Operate a free-piston Stirling engine (FPSE) on hydrogen reformed from ammonia (run on H_2 , not on reformed NH_3 yet)




Microfibrous Materials Introduction Benefits and Attributes

Activated Carbon Fiber and $2\mu m$ Stainless Steel

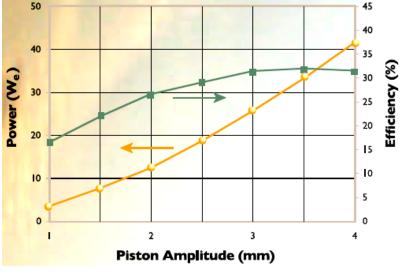
55-85 μm sorbent entrapped in 2,4,8 μm Ni fibers

- Definition: Microfibrous Materials provide for the mechanical and electrical entrapment of a particle or fibrous solid within <u>sinter-locked</u> networks of a secondary fibrous matrix
- <u>Attributes:</u> The volume loading of each phase is relatively independent of the other phase, and adjustable over a wide range compared to current SOA materials and practices

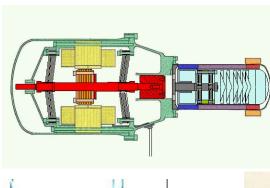
What's Unique About Microfibrous Materials?

Auburn University

- * Based on a simple, paper-making process
 - » Reel-to-reel fabrication demonstrated
- Multiple materials/material combinations
 - » Metals, polymers, ceramics
 - » e.g. Ni, stainless steels, Ti, Hastelloy, Nicrome, FeCrAl, Cu...
- Fiber size, length options
 - » Size: 1-50 μ m; tow or chopped (1mm 25 mm)
- ★ Can include catalysts, sorbents, etc.
- * Able to independently control properties
- Tailored 3-D structures possible



- They require an external source of heat and can operate over a wide input temperature ranges
 - » Propane, butane, gasoline, diesel, H_{2} , NH_{3} ...
 - » Solar, geothermal, nuclear...
- They are being used on earth and in space applications
 - » Low maintenance and quiet
 - » 80W convertor lifetimes over 25,000 hrs demonstrated
 - » Low or no vibration when used in dual-opposed operation



Why Free-Piston Stirling Engines?

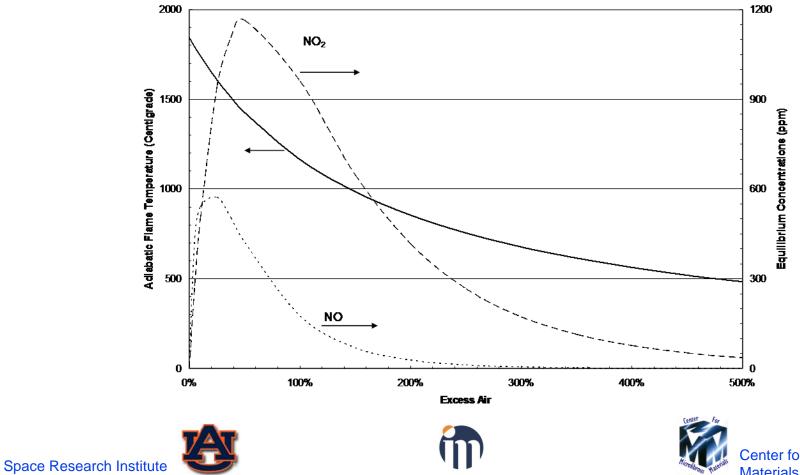
Auburn University

- ★ High efficiency
 - » ~37%, depending on Th/Tc
 - » >90% alternator efficiency
- ★ High specific mass (~100W/kg)
 - » Only two moving parts that make no contact
- Many sizes demonstrated
 - » 25 kW (1992)
 - » 35 W, 80 W, 1.2 kW
 - » New NASA 5 kW

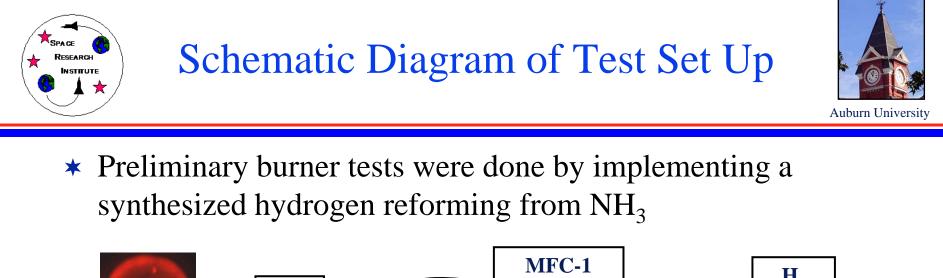
INTRAMICRON

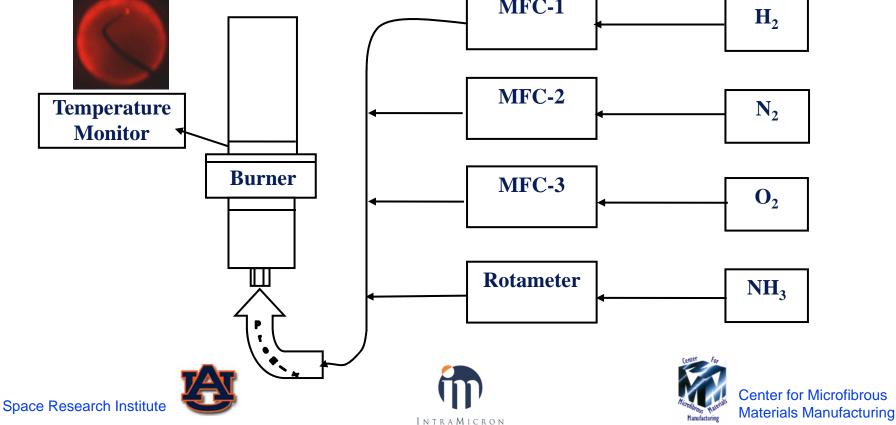
Why Ammonia-Fueled Free-Piston Stirling Engines ?

- Ammonia, containing 17.6% hydrogen by mass, could be used with high efficiency and reduced pollution
 - » It is easily stored and transported safely
 - » Flammability limits of NH_3 (Vol % in air) only between 15.5% and 27%
- Optimized NH₃ reforming catalysts and the means for entrapping them in a matrix exist
 - » Relatively easy to reform NH_3 to H_2
 - Is full reformation the best choice?
 - Of course H_2/O_2 combustion produces a clean flame and only water
 - » We have demonstrated catalytic combustors for NH₃
 - Including some percentage of H_2 in an NH_3 stream stabilizes the combustor
- We'll use partial NH₃ decomposition to show feasibility of producing temperatures that could be used by a free-piston Stirling engine



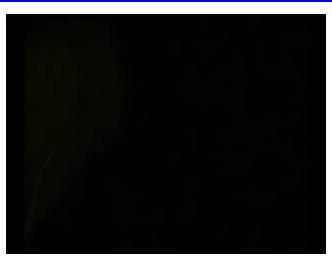
Ammonia-Air Combustion Products




Auburn University

Combustion of Ammonia with Air

INTRAMICRON



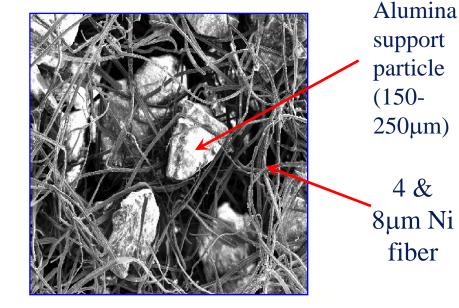
Burner Tests 1: NH₃ and Air Only

Auburn University

- Cold apparatus
 - » Difficult to ignite
 - » NH₃ combustion short-lived
- ★ Hot apparatus
 - » NH₃ combustion ignites
 - » Extinguished when air flow is stopped
 - » Temperature: 740 °C

INTRAMICRON

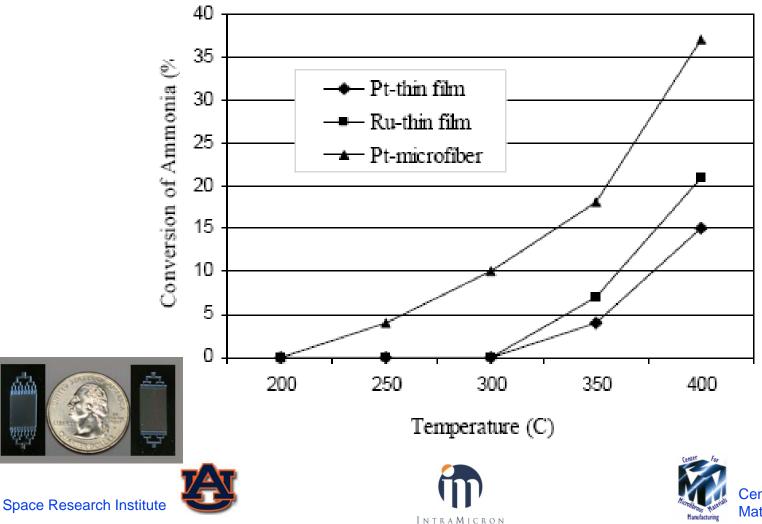
NH₃ Decomposition Catalyst Bed



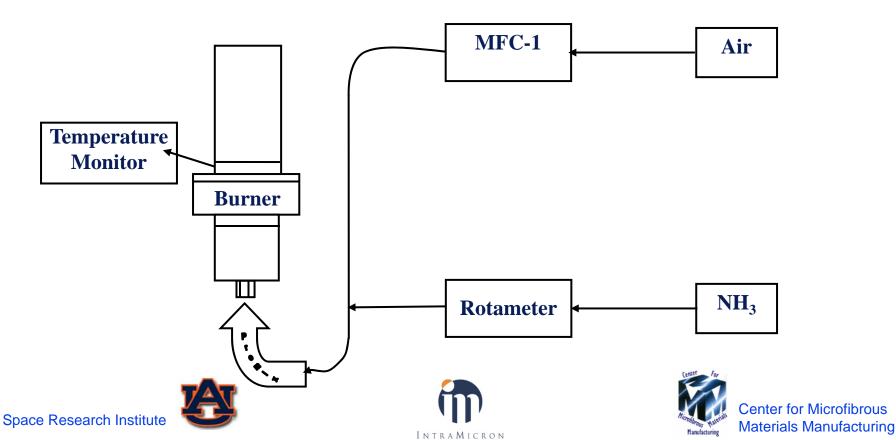
Auburn University

* Preparation of catalyst bed

- » Wet laid material
 - Cellulose, 4 & 8 µm Ni fibers and 150-250 micron alumina powder (1:1:3.8)
 - Two layers placed on a 120 mesh SS screen and sintered in H₂ at 1000°C
- » 8% chloroplatinic acid used for a loading of 10.8 wt %
 Pt on the alumina
- » Dried at 110°C and then calcined in air at 400°C



Ammonia Conversion


Auburn University

* A disc of microfibrous porous media was used to decompose NH_3 into H_2 and N_2

Burner Tests 3: Catalyzed Bed

Auburn University

- NH₃ plus air thru catalyzed bed, hot apparatus
 - » Flame confined to media
 - » Temperature: 750 °C
- NH₃ plus air thru catalyzed bed, hot apparatus
 - » Flame goes into media
 - » Temperature: 765 °C

Burner Tests 3a: Catalyst Compared to Synthetic Reformate

Auburn University

- ★ Synthesized reformate of NH₃, air and H₂
 - » Ni media
 - » Stable flame
 - » Temperature: 990°C
- NH₃ plus air thru catalyzed bed with 4.5 μm media
 - » Stable combustion
 - » Temperature: 940°C

Burner Tests 4: Catalyzed Bed

INTRAMICRON

Auburn University

- NH₃ plus air thru catalyzed bed,
 4.5 μm Ni media to prevent flame front going into media
 - » Stable burning
 - » Temperature: 940 °C
- NH₃ plus air thru catalyzed bed,
 4.5 μm Ni media to prevent flame front going into media
 - » Stable burning
 - » Temperature: 940 °C
 - » Temper probe shown

- Favorable conditions for flame stability of combustion of hydrogen reformed from ammonia through a catalyst-impregnated microfibrous porous media were obtained
 - » Stable catalytic combustion demonstrated
 - » Temperatures of 940°C were obtained
- Feasibility of ignition and combustion of ammonia depends on:
 - » Temperature of the catalyst bed
 - » Porosity and pore size of microfibrous media
 - » Flow rates of NH₃ and air
- The microfibrous media can be shaped to conform to the head of a Free-Piston Stirling Engine
 - » Multilayer media that controls NOx emissions can also be produced

Thanks for Your Attention

Auburn University

"Ammonia! Ammonia!"

Drawing by R. Grossman; @ 1962. The New Yorker Magazine, Inc.

