

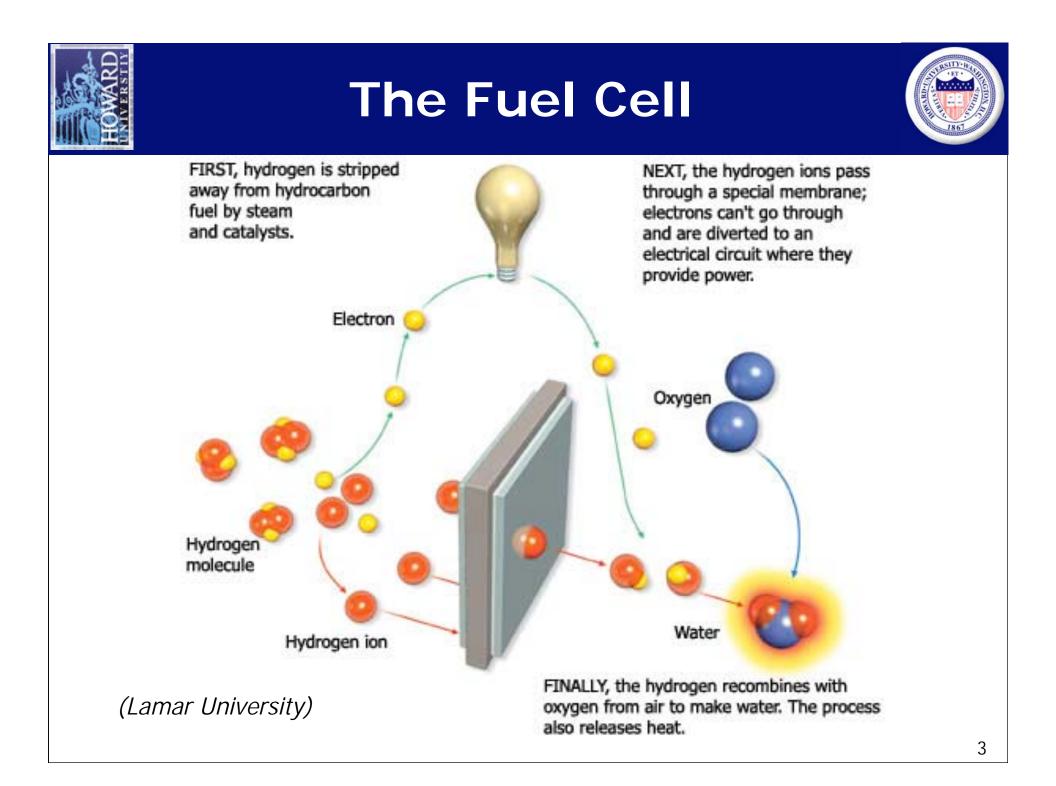
Ammonia: The Key to a Hydrogen Economy

Ammonia Fuel Cell Systems

Jason C. Ganley

Howard University Department of Chemical Engineering Washington, DC

Introduction to Fuel Cells


- Characteristics
- Fuel Cell Types
- Fueling the Fuel Cell

Ammonia Fuel Cells

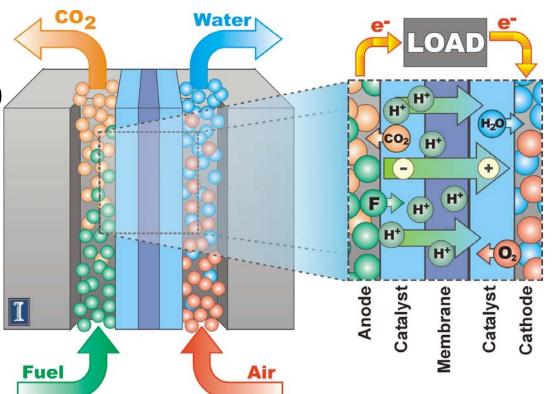
- Advantages and Challenges
- Direct vs. Reformed NH₃
- Other Electrochemical Applications

•High Temperature Fuel Cell Focus

- Ammonia and Solid Oxide Fuel Cells
- Protonic Ceramic Fuel Cells

Fuel Cell Anatomy

•Fuel Cell Electrodes


- Anode (oxidation)
- Cathode (reduction)

Electrocatalyst

- Porous, electrically conductive
- Cost depends on cell temperature

Ionic Membrane

- Not electrically conductive
- Protonic or anionic

Fuel cell operating with air/hydrocarbon feed

- •Polymer Electrolyte Membrane Fuel Cells (PEMFC) [80°C, H+]
- •Direct-Methanol Fuel Cells (DMFC) [80°C, H⁺]
- •Alkaline Fuel Cells (AFC) [150°C, OH-]
- Phosphoric Acid Fuel Cells (PAFC) [220°C, H⁺]
- Protonic Ceramic Fuel Cell (PCFC) [650°C, H⁺]
- Molten Carbonate Fuel Cells (MCFC)

[700°C, CO₃²⁻]

•Solid Oxide Fuel Cells (SOFC) [900°C, O²⁻]

Operating Temperature: A Key Characteristic

- Quick start-up to operating temperature (~100°C)
- Wide range of cell construction materials

High Temperature Fuel Cell Advantages

- Fuel flexibility via internal fuel reforming
- Inexpensive, base metal electrocatalysts
- Easier heat recovery for increased efficiency

Intermediate Temperature Fuel Cells: The Best of Both Worlds?

- Precious metal catalysts not needed above ~300°C
- Stainless steel internals may be used below ~750°C

Advantages of Hydrogen Fuel

- Fast electrocatalytic reaction
- Protons [H⁺] or hydronium ions [H₃O⁺] conduct rapidly across acidic membranes
- Very high energy to weight ratio
- Carbon-free: eliminates local CO₂ pollution

Disadvantages

- Compressed H₂: poor energy to volume ratio
- Liquefied H₂: cryogenic; very energy intensive to create and maintain
- Safety for handling and storage a very big concern

On-board vs. Internal Reforming

- Higher fuel energy density
- Easier fuel distribution

Fuel Reformers

- Thermally isolated or integrated
- May be bulky, problematic

Direct Fuel Cells

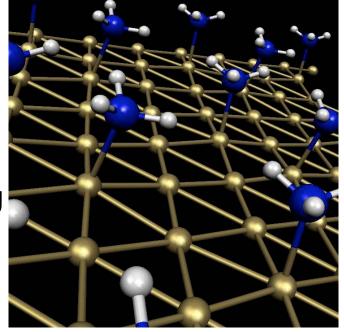
- Internal reforming of fuel
- Mostly high temperature FCs
- Reaction intermediates may require consideration

50 kW natural gas reformer Harvest Energy Technology

- Very mild enthalpy of reforming
- NH₃ is a liquid at room temperature and 10 atm
 - Power density is comparable to other liquid fuels
 - Vaporizes when throttled (no flash line required)
- Essentially non-flammable, non-explosive
- 180 kWh of electricity from 15 gallons ammonia (38 kg) with 50% efficient fuel cell system
- Well-established transport and storage infrastructure already in place

Fuel Cell Suitability of Anhydrous Ammonia

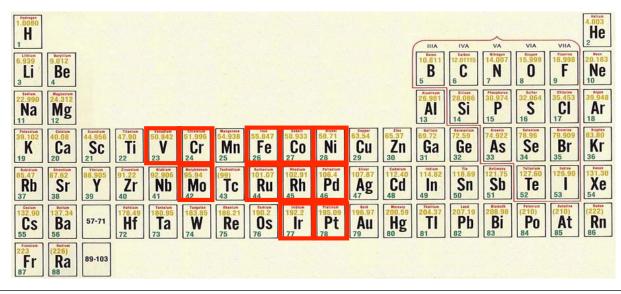
Externally reformed ammonia

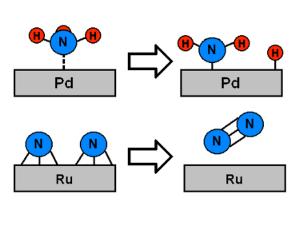

- Trace NH₃ incompatible with PEM
- Trace amounts limited by chemical equilibrium
- Reformate usually must be scrubbed

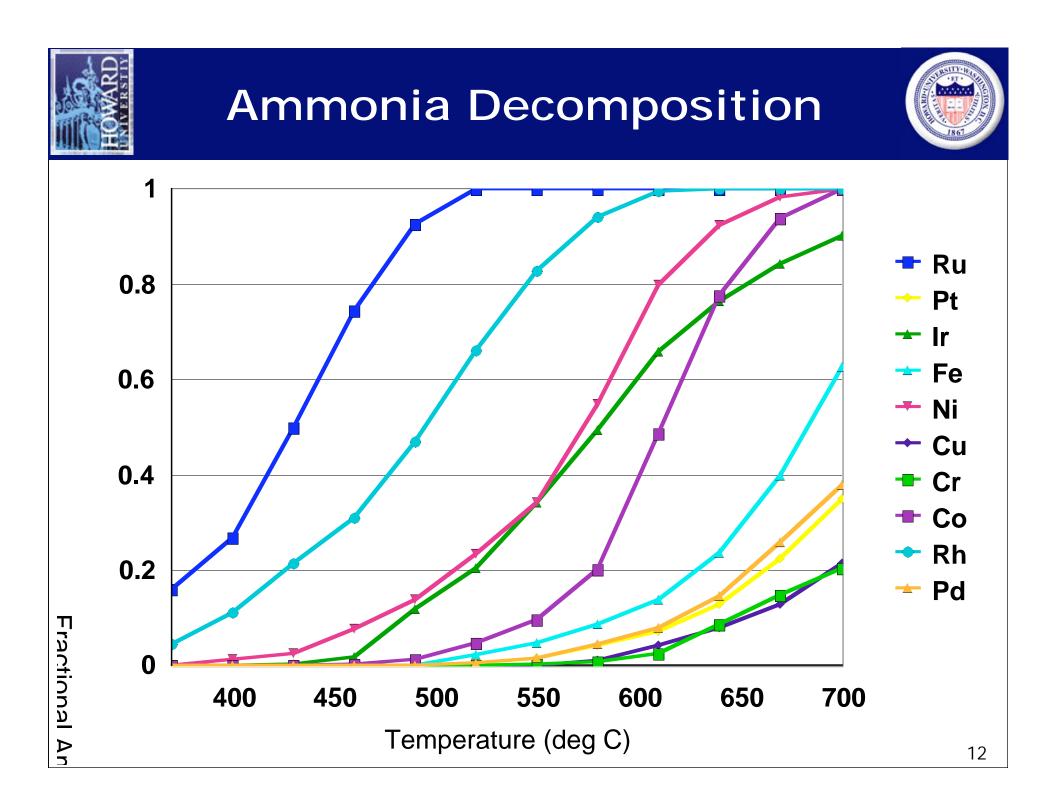
Meduium/high temperature

fuel cells

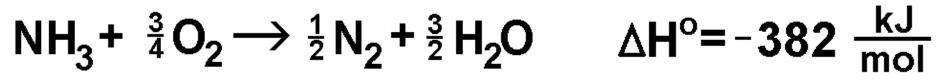
- PAFC: Trace NH₃ reacts with acid electrolyte
- MCFC: NH₃ crossover, CO₂ recycling complication
- SOFC: An excellent fuel choice, but some NO_x
- PCFC: An excellent fuel choice, no NO_x




Ammonia Catalysis



- Dual combinations of transition metals used for industrial ammonia processes
 - Ammonia synthesis
 - Ammonia decomposition
 - Ammonia oxidation


Interesting combinations: Ru/Pd, Fe/Ni

Catalytic combustion

- Start-up heat source for fuel cells
- Satisfies "one-fuel" approach

Nitrogen oxide control

- Oxidation catalysts (Cu, Fe, Cr)
- Ammonia injection

$NO_x + NH_3 \rightarrow H_2O + N_2$

Univ. of Wisconsin Chemistry Dept.

Fuel Comparison

Fuel

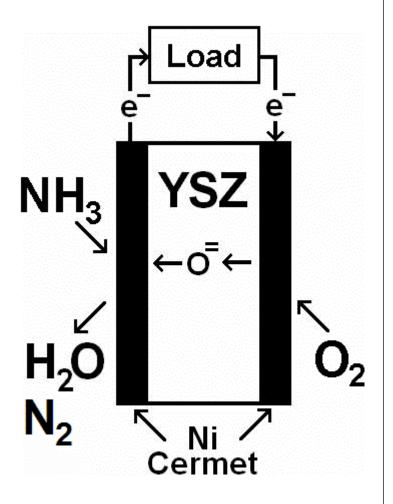
Base MJ/liter Reformed MJ/liter*

H ₂ (5000 psia)	4.0	4.0	
H ₂ (liq.)	9.9	9.9	
NH ₃ (liq.)	15.3	13.6	
Methanol	17.9	10.2	
Ethanol	23.4	9.1	
Propane (liq.)	29.4	8.6	
Gasoline	36.2	9.2	
JP-8	40.5	9.7	

* Includes heat and water volume required for steam reforming

Direct Fuel Cell Comparison

Fuel Utilized (Electrolyte Type)	Direct Ammonia (PCC)	H ₂ Gas (PEM)	Hydrocarbon (SOFC)
Operating Temperature (°C)	500 - 750	20 - 100	800 - 1000
Materials Construction Cost	Moderate to low (stainless steel)	Low (aluminum)	High (metal oxides/ceramics)
Electrocatalyst	Low	High	Low
Cost (Type)	(Ni, Co, La, Mn)	(Pt, Pd, Ru)	(Ni, Co, La, Mn)
Water Product Discharge	At cathode, into air stream	At cathode, into air stream	At anode, dilutes fuel



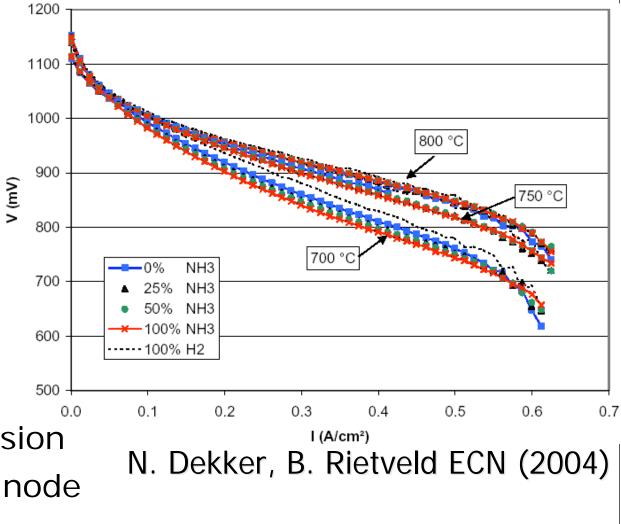
Ammonia Solid Oxide Fuel Cell

Utilizes inexpensive base metal catalyst (Ni or Co)

- Operating temperature 800-1000°C, depending on electrolyte
- Elevated temperature allows direct ammonia utilization
- Complete ammonia conversion not possible
- Fuel diluted by steam, product nitrogen
- NO_x may appear in exhaust

NH₃/SOFC Performance

Standard SOFC


- YSZ electrolyte
- Ni anode
- LSM cathode

Carbon-free

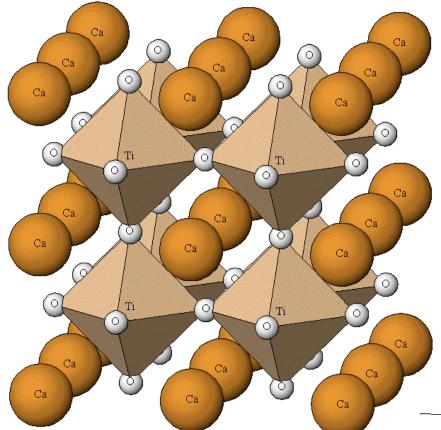
- Dry fuel
- Faster kinetics

Conclusions

- High NH₃ conversion
- NOx formed at anode
- Virtually no difference between NH₃ and H₂ feeds

17

Proton Conducting Perovskites



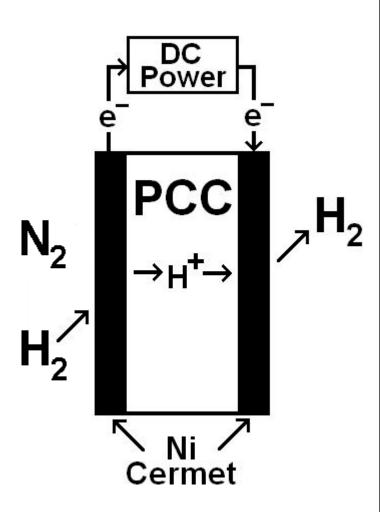
General characteristics

- ABO₃ (A⁺², B⁺⁴)
- Must be doped with lowervalence (acceptor) elements
- Oxygen vacancies replaced by protons after steam treatment

Complex perovskites

- $A_2(B'B'')O_6(A^{+2}, B'^{+3}, B''^{+5})$
- Comparable conductivities to simple perovskites
- Doping" possible by adjustment of B'/B" ratio

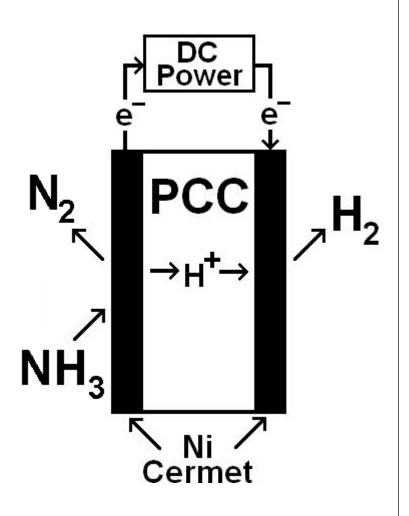
(AIST, Japan)



Pure Hydrogen from Ammonia Reformate

Protonic ceramic applied as a hydrogen pump

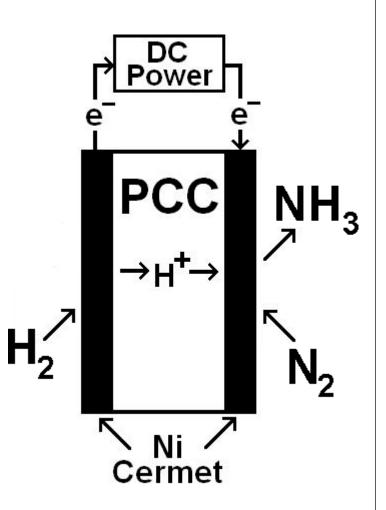
- Separation of hydrogen from stream impurities
- Pressurization of hydrogen stream
- Removal of CO from syngas
- Dehydrogenation reactions to produce propylene, ethylene, acetylene



Protonic Ammonia Electrolyzer

Substitution of thermal energy with electric power

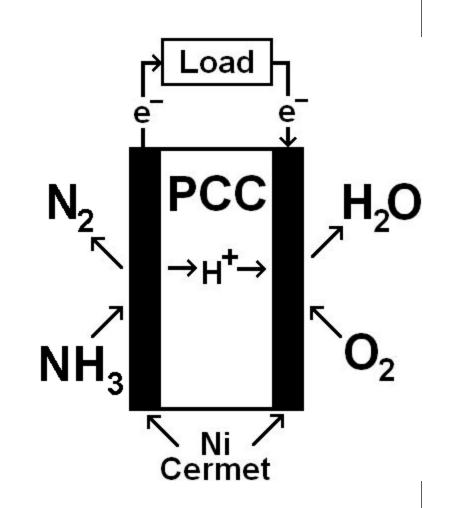
- "Cracked" hydrogen stream is nitrogen-free
- Mild decomposition energy requires little electric power
- Complete ammonia conversion possible!
- If operated with recycle, will require purging to avoid N₂ buildup



Protonic Ammonia Synthesis

An alternative to packedbed heterogeneous catalysis

- Verified experimentally
- May also use higher alkenes for hydrogen source
- May be carried out at atmospheric pressure!
- Limited by thermodynamic equilibrium, just as in Haber synthesis



The Protonic Ammonia Fuel Cell

- Operating temperature 450-700°C, depending on catalyst
- Elevated temperature increases electrode kinetics
- Complete ammonia conversion IS possible!
- Fuel not diluted by steam
- NO_x-free exhaust

