

HEC - INTRODUCTION

- Based in Algona, IA
 - Controls group in Quebec
- Founded 2003
- Publicly traded since Sept. 2005
- Primary products are alternative fuel engines, power generators, and controls

TRENDS

- Total vehicle emissions remain constant even with marked improvement in emissions control
- Why?
- Auto and truck registrations projected to increase to 3.5 billion in 2050 from 800 million in 1996 (source: US DOE)
- Other sources will follow suit such as off road mobile applications, but at a lesser rate.

SOLUTIONS

- Carbonless off road mobile fuel alternatives
 - Fuel Cells
 - Barriers
 - Cost
 - Acceptance
 - Service Infrastructure
 - IC Engines
 - Enablers
 - Cost
 - Acceptance
 - Service Infrastructure

KEYS TO SUCCESSFUL ICE OPERATION

- Oil Control
 - Cylinder Finish
 - Piston Rings
 - Piston Ring Placement
 - Valve guides
- Engine Control
- Control robustness
 - A/F Ratio
 - Ignition timing
 - Exhaust Temp
- Valve Timing
- Optimize mean effective pressure

GENERAL – H2 OXX POWERTM ENGINES

- ~ 80 ft³/min of H2 will produce 120 kW @ 35% efficiency (η) at a stoichiometric (balanced) air fuel ratio
- When properly tuned, base exhaust byproducts are water and nitrogen with very low trace emissions elements

HEC ENGINE PLATFORM

- 4.9L In line 6 cylinder engine
- 60 + kW peak w/H2 fuel
- Oxx Boxx[™] full authority engine controller
- Turbocharged or naturally aspirated
 - Variants
 - 3 cylinder 2.4L
 - 2 cylinder 1.6L
 - 1 cylinder .8L
 - 87% parts commonality

HEC OXX POWERTM 4.9L H2 ENGINE

OXX POWER ENGINE FAMILY

1 cyl .8L

Development of a 12L and 23L Engine

3 cyl 2.4L

6 cyl 4.9L

EMISSIONS PERFORMANCE

THE HYDROGEN PARADIGM

- Current DISABLERS to widespread hydrogen use as a fuel:
 - Lack of infrastructure
 - High storage pressures
 - Low energy storage density
 - High cost of onsite manufacture

THE HYDROGEN ENABLER

- Anhydrous Ammonia
 - 17.65% H2 by weight density vs.14% for Liquid H2
 - Established infrastructure
 - Carbonless
 - Second most produced chemical

ANHYDROUS AMMONIA – BUSINESS CAS

- Infrastructure
 - 44 DistributionTerminals
 - Total Storage
 - 3100 miles of pipeline
 - 23 plants

ANHYDROUS AMMONIA BUSINESS CASE

Production Infrastructure

Ammonia Plants – 23

Storage Tanks (Pipeline & River) – 70

Import Tanks – 17

Kaneb Pipeline

Magellan Pipeline

Mississippi - Ohio River System

Hydrogen to Ammonia Storage Comparison for 327 kg (722 LB) H2 @ 3600 psi vs. NH3 @ 1000 gallons

HEC NH3 OXX POWER TM ENGINE

Dual gaseous injector rails

Electronic Throttle Body

Ammonia Fuel Cost Comparison

AMMONIA FUEL COST

CAMBADICONI

Comparison of Synthetic Ammonia (NH3) to Natural Gas and Propane for a 50 kW genset (assumes \$250/ton NH3 commercial cost)

Fuel Type

NH3 PROGRAM STATUS

Ammonia Engine

- Operating in field with 300 combined test hours
 - NH3 & LP
 - NH3 & H2 also tested at HEC
 - Unit in field operation since September 20, 2007

Next phase

- 13.5:1 Test commencing
- Integrate into generator set
- Add additional irrigation units

Economics

- Can put generation costs on par with LP currently
- Working to put running costs on par or lower than NG and diesel
- Low infrastructure costs

NH3 SHORT TERM OBJECTIVES

- NH3 Field Trials
 - Testing 2007
 - Establish Test Sites
 - 3 in 2007
 - » 1 Power Unit Test in progress
 - » Add additional Irrigation Power Units
 - » 1 Engine Specific (off road mobile or other)
 - » 1 DG
 - Proof of concept testing and endurance
 - Continue to refine control algorithm and fuel management system

FIELD TRIAL INSTALLATION

- Irrigation and Livestock watering application
- Location: Visalia, California
- Specifications Pump System
 - Flow Rate: Up to 2000 gallons per minute
 - Running ~ 550 gallons per minute
 - Speed 1800 2200 RPM
 - Power Requirements: 35 HP
- Start up date: September 20, 2007

FIELD INSTALLATION HEC NH3 0XX POWER™ **UNIT** WELL PUMP **DRIVE SHAFT**

APPLICATIONS

- Fork Lift
 - Same fuel storage as LP
- Arial Lifts
- Farm Machinery
 - Tractors
 - Diesel and SI
 - Implements
- Loaders
- Marine
- Stationary
 - Power Generation Combine with renewables
 - Irrigation
 - Oil extraction

VISIBILITY: PRESIDENTIAL CANDIDATES

OBJECTIVE

- Establish awareness of HEC's solution to foreign oil dependency
 - Focus on NH3
 - Promote established infrastructure
 - Promote cost benefit basis
 - Promote a carbonless fuel alternative that is ready to deploy

HYDROGEN PROJECTS

- United Nations Industrial Development Organization (2 x 250 hp H2 marine engines)
- Grasim Industries: 1 x 50 kW continuous power genset project has entered next phase
- NRCAN: 1 x 4 + 1 250 kW system for Ramea Island
- XCEL ENERGY/NREL/DOE: 1 50kW grid connectable system coupled to wind power
- ITM Power: 1 cylinder (.8L) Oxx Power Engine coupled to ITM's H2 electrolyzer for either grid independent or dependent application
- TGP WEST: Irrigation project using Oxx Power Unit running on anhydrous ammonia
- Numerous other projects such as airport fleet retrofit with H2 Oxx Power engines, etc.

CARBONLESS FUELS: THE FUTURE

- Continue to establish hydrogen applications where they make sense
 - Wind and Solar to Hydrogen
 - Off road mobile projects
 - Proof of concept
 - Early adopter
 - Work with NH3 as the hydrogen enabler now
 - Establish durability
 - Optimize performance and emissions
 - Emissions certification
 - Market acceptance

SUMMARY

- IC engines can run <u>reliably</u> and <u>cost</u> effectively @ near zero emissions
- Ammonia can be a hydrogen enabler
- Hydrogen and NH3 can be run successfully in SI engines
- Ammonia properties similar to LP
- HEC system can be implemented on other engines

Thank You!

Hydrogen Engine Center, Inc.
2502 E Poplar St
Algona, IA 50511
www.hydrogenenginecenter.com

Phone: 515-295-3178

Fax: 515-395-1877

