

Solid State and Electrolytic Ammonia Production

Jason C. Ganley

Howard University
Department of Chemical Engineering
Washington, DC

Presentation Outline

Protonic ceramics and NH₃ synthesis

- Overview of proton conducting ceramics
- Application of PCCs to ammonia production
- Benefits and limitations of the technique

Molten salts and NH₃ synthesis

- Principles of molten salt electrochemistry
- Catalytic activation and ionization of intermediates
- Extension to solid-state operation
- Outlook for the application of the technology

Proton Conduction: Doped Perovskites

General characteristics

- ABO₃ (A⁺², B⁺⁴)
- Must be doped with lowervalence (acceptor) elements
- Oxygen vacancies replaced by protons after steam treatment

Complex perovskites

- $-A_2(B'B'')O_6(A^{+2}, B'^{+3}, B''^{+5})$
- Comparable conductivities to simple perovskites
- "Doping" possible by adjustment of B'/B" ratio

AIST, Japan

PCC Application: Steam Electrolysis

- Steam electrolysis
 - Substitution of electrical energy by thermal energy
 - High thermal efficiencies possible (large scale process)
- Hydrogen produced is high purity
- Dry hydrogen produced using PCC

PCC Application: Hydrogen Pumping

Very useful for hydrogen purification applications

- Separation of hydrogen from syngas
- High pressures of pure H₂ achievable with reasonable applied voltages

Dehydrogenation of hydrocarbons

- Production of pure H2 from ethane or propane
- Side-products of propene, ethylene, or acetylene very valuable

PCC Application: Ammonia formation

- Utilizes precious metal catalyst (Pd or Pt)
 - Operating temperature 450 700°C, depending on hydrogen source
 - Elevated temperature increases electrode kinetics
- Likely better choice for cathode catalyst: Cu or Ni
- Other hydrogen sources: steam, syngas, natural gas...

Work of Marnellos, et al.

 Work carried out at University of Thessaloniki, Greece

Atmospheric pressure

Equilibrium amount of ammonia synthesized

■80% current efficiency at 570°C

The real difference: kinetics

- Different reaction conditions and processes lead to different rate limits
- This will be key in determining the value of this method

(Marnellos et al, 2000)

Enhanced Reaction Rates

Notes: CCR = Conventional Catalytic Reactor PCCR = Protonic Ceramic Catalytic Reactor

Fig. 2. Dependence of the rate of (**A**) NH_3 formation and of (**B**) the percent conversion of H_2 on the rate of electrochemical hydrogen supply, I/2F, under the following conditions: temperature, 570°C, and inlet partial pressure of N_2 , 1.8 kPa. In (A), the CCR curve is the calculated NH_3 formation rate in a CCR and the PCCR curve is the calculated total pressure of operation of a CCR. In (B), the CCR curve is the calculated percent conversion of H_2 in a CCR.

(Marnellos et al)

PCC Ammonia Synthesis

Current concerns of large-scale ammonia synthesis

- Cost of chemical feedstock (NG)
- Process efficiency (compression)
- Energy cost of refrigeration to separate product
- Cost of next-generation catalysts (Ru, CoMoN)

Possible impacts of PCC synthesis

- Feedstock unaffected, processing issues may be simplified (steam reforming on anode vs. separate gas processing)
- Thermodynamics unaffected, but processing costs (compression, recycle) will be
- Pd is not inexpensive... Cu or Ni?

Molten Salt Electrochemistry

Molten salts: properties

- High ionic conductivity
- Usually low vapor pressure
- Wide operation windows with respect to temperature
- Eutectic compositions

Solubility of ions in salts

- Observable dealloying of metals
- Usually limited to transition metals and salt constituents
- Ionized species may participate in electric field-driven reactions

Application to Ammonia Synthesis

(University of Kyoto)

Details of Salt Synthesis

Operating conditions

- Atmospheric pressure
- Temperature: 150 600°C
- Products collected with unused reactants

Cell performance/composition

- Nitride formation highly efficient
- Pure LiCl, KCl; or eutectic mix
- Porous, nickel-based electrodes at T > 400°C
- Porous, palladium-based electrodes at T < 400°C

Extension to Solid State

Immobilization of salt

- Molten salt contained within porous ceramic matrix
- Surface tension prevents flow
- Ceramic material chosen for chemical and thermal stability

Electrodes coated on ceramic surface

- Sputtering/evaporation
- Painting/catalyst pastes
- Co-firing of green ceramic tape
- Screen printing

(University of Bath)

Prospects for Molten Salt Ammonia Synthesis

Largely the same as PCCs

- Kinetic studies not yet published
- Electrode limitations (mass transfer) just as important

Important possibilities

- Lower temperature operation: higher equilibrium conversion
- The big question: will highvalue electrical power be used efficiently enough to replace thermal energy and powerintensive compression in Haber-Bosch?

Questions/Discussion

Jason C. Ganley
Howard University
Department of Chemical Engineering
2300 6th Street, NW
Washington, DC 20059
(202) 806-4796
jganley@howard.edu