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Gas lurbines
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Wide range of:

> Size

> Complexity

> Flame T and p

> Emission contrels
> Fuels
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What's Different on NH;?

> Turbine/compressor matching
o Low heating value means turbine flow higher

> Fuel supply system

> Gas & flame properties (radiant heat transfer,
specific heat ratio...)

> Combustion process Is main; ISsue
o Flame speed/combustor size

o Flammability limits/turndoewn ratio
e NOX




Combustion Design Impacts

> Larger combustors
> Stability limits impact part-power
o Flame zone stoichiometry

> Higher temperature better for flame speed
and wider flammability limits
o Large engines favored
o« NOx concerns




Ammonia Oxidation

Blue Decrease
Red Increase

>

NHS3 -> N2 or NO

> Which predominates?

>

|_Lessons from hydro-
carbon chemstry

In flames, fuel-N' makes
NH3, then NO

Post-flame NH3 is thermal
o[=5\[0)'¢

Key: rxn temperature

Need NH3 post-flame

o Inject it
o« Convect it




NHS3 in Gas Turbine vs ICE

> |ICE results promising; G data lacking but kinetics
calculations pessimistic (>1000 ppm even with RQL)

> Explanation??
o [hermal Nox reductionin ICE due to reduced flame T

o But...DLN/technologies iniGT already do that (~10 ppm gas/50 ppm)
o Does residual NH3 survive the ICE flame zone? Maybe we want that.

Differences:

> Combustion continuous vs intermittent
> Steady vs pulsed fuel injection

> High ICE flame T, higher sensitivity

> Mixedness dependent on design
o Much efiort to mix well
o Designito do a poorer job off mixing? Allow fugitive NHS?




Summary

> Traditional hydrocarbon fuel-Nite NO attributed to NH3
pathway at high T

> Ihermall de-NOx works at moderate T

> Speculate that observed Diesel NOx reductions dominated
by thermal Zel'dovich mechanism
o Little opportunity for gains in GT with DLN
o Higher Diesel CR may trigger large NOx increase

> Gas turbine NH3' combustion research needed:

Oxidation pathways lacking carbon species; modeling
Sufficient unmixedness to de-NOx
Optimal flame temperature regime

Must still suppress thermal NOx

Suppress NO pathway

But keep I high enoughi for stability
Enhancement by fuel blends, NH3 cracking,, ete.
Expernimentalldata




NH3 Gas Turbine R&D Needs

Oxidation pathways lacking carbon species; modeling
Sufficient unmixedness to de-NOx

Optimal flame temperature regime
o Must still suppress thermal NOXx

o Suppress NO pathway

o But keep T high enough for stability

Enhancement by fuel blends, NH3 cracking, etc.
Experimental data
System innovations




Blue Sky ldeas/Concepts




Combined HPRTE/VARS Cycle
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PoWER Combined Cycle Demonstration at UF
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HYDROGEN-FUELED POWER CYCLE

Alternative No.2
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Alternative to Regeneration: [
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VARS Details

3 Components of Vapor Absorption Refrigeration System
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