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Outline of PresentationOutline of Presentation
 BackgroundBackground
 Technical issuesTechnical issues
 R&D needsR&D needs
 ConclusionsConclusions



Gas TurbinesGas Turbines

Wide range of:Wide range of:
 SizeSize
 ComplexityComplexity
 FlameFlame  T and pT and p
 Emission controlsEmission controls
 FuelsFuels



WhatWhat’’s Different on NHs Different on NH33??
 Turbine/compressor matchingTurbine/compressor matching

 Low heating value means turbine flow higherLow heating value means turbine flow higher
 Fuel supply systemFuel supply system
 Gas & flame properties (radiant heat transfer,Gas & flame properties (radiant heat transfer,

specific heat ratiospecific heat ratio……))

 Combustion process is main issueCombustion process is main issue
 Flame speed/combustor sizeFlame speed/combustor size
 Flammability limits/turndown ratioFlammability limits/turndown ratio
 NOxNOx



Combustion Design ImpactsCombustion Design Impacts

 Larger combustorsLarger combustors
 StabilityStability  limits impact part-powerlimits impact part-power

 Flame zone Flame zone stoichiometrystoichiometry

 Higher temperature better for flame speedHigher temperature better for flame speed
and wider flammability limitsand wider flammability limits
 Large engines favoredLarge engines favored
 NOx NOx concernsconcerns



Ammonia OxidationAmmonia Oxidation
 NH3 -> N2 or NONH3 -> N2 or NO
 Which predominates?Which predominates?
 Lessons from hydro-Lessons from hydro-

carbon carbon chemstrychemstry
 In flames, fuel-NIn flames, fuel-N  makesmakes

NH3, then NONH3, then NO
 Post-flame NH3 is thermalPost-flame NH3 is thermal

de-Noxde-Nox
 Key: Key: rxn rxn temperaturetemperature

 NeedNeed  NH3NH3   post-flame post-flame
 Inject itInject it
 Convect Convect itit



NH3 in Gas Turbine NH3 in Gas Turbine vs vs ICEICE
 ICE results promising; GT data lacking but kineticsICE results promising; GT data lacking but kinetics

calculations pessimistic (>1000 calculations pessimistic (>1000 ppm ppm even with RQL)even with RQL)
 Explanation?Explanation?

 Thermal Thermal Nox Nox reduction in ICE due to reduced flame Treduction in ICE due to reduced flame T
 ButBut……DLN technologies in GT already do that (~10 DLN technologies in GT already do that (~10 ppm ppm gas/50 gas/50 ppmppm))
 Does residual NH3 survive the ICE flame zone? Maybe we Does residual NH3 survive the ICE flame zone? Maybe we wantwant that. that.

Differences:Differences:
 Combustion continuous Combustion continuous vs vs intermittentintermittent
 SteadySteady  vs vs pulsed fuel injectionpulsed fuel injection
 High ICE flame T, higher sensitivityHigh ICE flame T, higher sensitivity
 Mixedness Mixedness dependent on designdependent on design

 Much effort to mix wellMuch effort to mix well
 Design to do a poorer job of mixing?Design to do a poorer job of mixing?  Allow fugitive NH3?Allow fugitive NH3?



SummarySummary
 Traditional hydrocarbon fuel-N to NO attributed to NH3Traditional hydrocarbon fuel-N to NO attributed to NH3

pathway at high Tpathway at high T
 Thermal Thermal de-NOx de-NOx works at moderate Tworks at moderate T
 Speculate that observed Diesel Speculate that observed Diesel NOx NOx reductions dominatedreductions dominated

by thermal by thermal ZelZel’’dovich dovich mechanismmechanism
 Little opportunity for gains in GT with DLNLittle opportunity for gains in GT with DLN
 Higher Diesel CR may trigger large Higher Diesel CR may trigger large NOx NOx increaseincrease

 Gas turbine NH3 combustionGas turbine NH3 combustion  research needed:research needed:
 Oxidation pathways lackingOxidation pathways lacking  carbon species; modelingcarbon species; modeling
 Sufficient Sufficient unmixedness unmixedness to to de-NOxde-NOx
   Optimal flame temperature regimeOptimal flame temperature regime

•• Must still suppress thermal Must still suppress thermal NOxNOx
•• Suppress  NO pathwaySuppress  NO pathway
•• But keep T high enough for stabilityBut keep T high enough for stability

 Enhancement by fuel blends,Enhancement by fuel blends,  NH3 cracking, etc.NH3 cracking, etc.
 Experimental dataExperimental data



NH3 Gas Turbine R&D NeedsNH3 Gas Turbine R&D Needs
 Oxidation pathways lacking carbon species; modelingOxidation pathways lacking carbon species; modeling
 Sufficient Sufficient unmixedness unmixedness to to de-NOxde-NOx
   Optimal flame temperature regimeOptimal flame temperature regime

 Must still suppress thermal Must still suppress thermal NOxNOx
 Suppress  NO pathwaySuppress  NO pathway
 But keep T high enough for stabilityBut keep T high enough for stability

 Enhancement by fuel blends, NH3 cracking, etc.Enhancement by fuel blends, NH3 cracking, etc.
 Experimental dataExperimental data
 System innovationsSystem innovations



Blue Sky Ideas/ConceptsBlue Sky Ideas/Concepts



Combined HPRTE/VARS CycleCombined HPRTE/VARS Cycle
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PoWER Combined Cycle Demonstration at UF 




