Ammonia-Fueled Combustion Turbines

William E. Lear

University of Florida

Department of Mechanical & Aerospace Engineering

Gainesville, FL



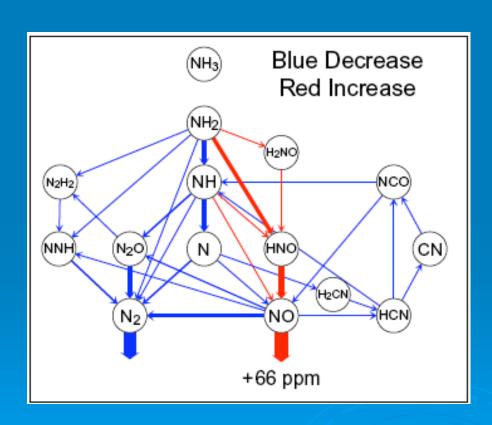
Outline of Presentation

- Background
- > Technical issues
- > R&D needs
- > Conclusions

Gas Turbines

Wide range of:

- > Size
- Complexity
- > Flame T and p
- > Emission controls
- > Fuels


What's Different on NH₃?

- Turbine/compressor matching
 - Low heating value means turbine flow higher
- Fuel supply system
- Gas & flame properties (radiant heat transfer, specific heat ratio...)
- Combustion process is main issue
 - Flame speed/combustor size
 - Flammability limits/turndown ratio
 - NOx

Combustion Design Impacts

- Larger combustors
- Stability limits impact part-power
 - Flame zone stoichiometry
- Higher temperature better for flame speed and wider flammability limits
 - Large engines favored
 - NOx concerns

Ammonia Oxidation

- > NH3 -> N2 or NO
- Which predominates?
- Lessons from hydrocarbon chemstry
 - In flames, fuel-N makes NH3, then NO
 - Post-flame NH3 is thermal de-Nox
 - Key: rxn temperature
- Need NH3 post-flame
 - Inject it
 - Convect it

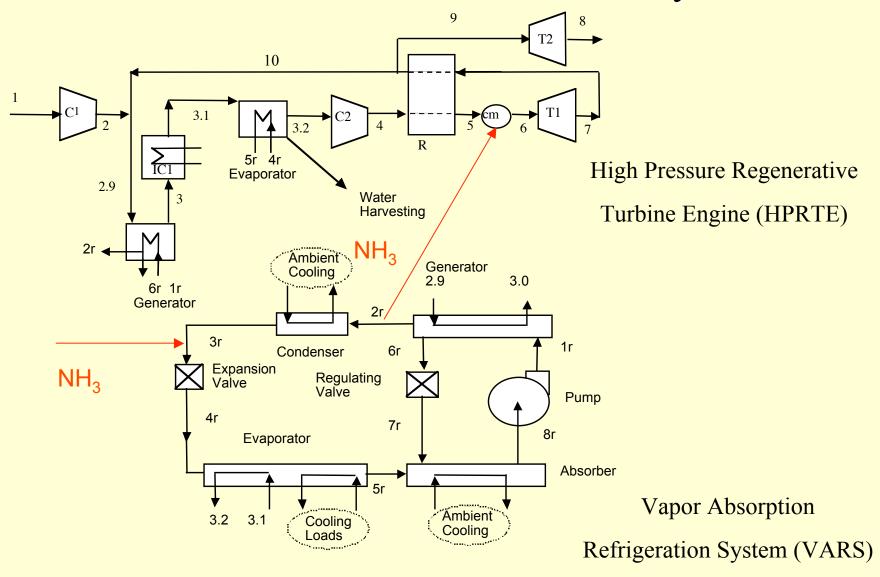
NH3 in Gas Turbine vs ICE

- ICE results promising; GT data lacking but kinetics calculations pessimistic (>1000 ppm even with RQL)
- Explanation?
 - Thermal Nox reduction in ICE due to reduced flame T
 - But...DLN technologies in GT already do that (~10 ppm gas/50 ppm)
 - Does residual NH3 survive the ICE flame zone? Maybe we want that.

Differences:

- Combustion continuous vs intermittent
- Steady vs pulsed fuel injection
- High ICE flame T, higher sensitivity
- Mixedness dependent on design
 - Much effort to mix well
 - Design to do a poorer job of mixing? Allow fugitive NH3?

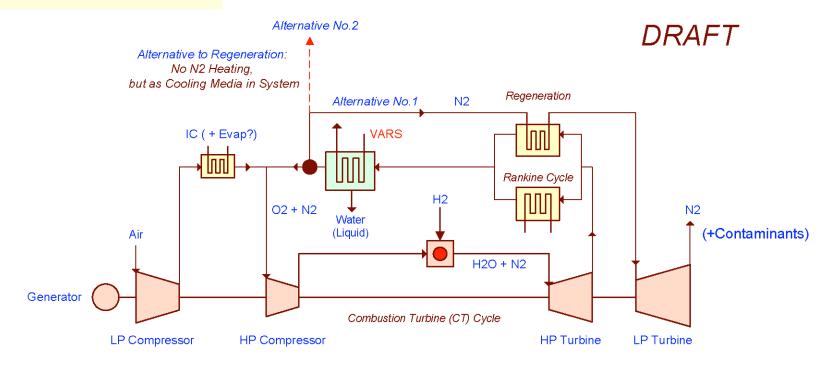
Summary

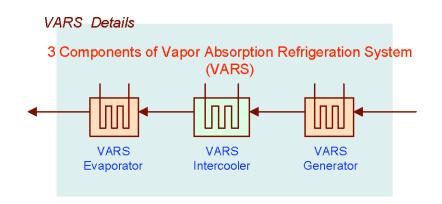

- Traditional hydrocarbon fuel-N to NO attributed to NH3 pathway at high T
- Thermal de-NOx works at moderate T
- Speculate that observed Diesel NOx reductions dominated by thermal Zel'dovich mechanism
 - Little opportunity for gains in GT with DLN
 - Higher Diesel CR may trigger large NOx increase
- Gas turbine NH3 combustion research needed:
 - Oxidation pathways lacking carbon species; modeling
 - Sufficient unmixedness to de-NOx
 - Optimal flame temperature regime
 - Must still suppress thermal NOx
 - Suppress NO pathway
 - But keep T high enough for stability
 - Enhancement by fuel blends, NH3 cracking, etc.
 - Experimental data

NH3 Gas Turbine R&D Needs

- Oxidation pathways lacking carbon species; modeling
- Sufficient unmixedness to de-NOx
- Optimal flame temperature regime
 - Must still suppress thermal NOx
 - Suppress NO pathway
 - But keep T high enough for stability
- Enhancement by fuel blends, NH3 cracking, etc.
- Experimental data
- System innovations

Blue Sky Ideas/Concepts


Combined HPRTE/VARS Cycle



PoWER Combined Cycle Demonstration at UF

HYDROGEN-FUELED POWER CYCLE

Information Source:
William E. Lear
Associate Professor
Department of Mechanical & Aerospace
Engineering
University of Florida
(352) 392-7572
lear@ufl.edu