COMPARISON OF AMMONIA / GASOLINE AND AMMONIA / ETHANOL MIXTURES

Rakesh Leeladhar Shawn Grannell

Stanislav Bohac

Dennis Assanis

Mechanical Engineering Dept. University Of Michigan

Background and Motivation

- We wish to use ammonia as a primary transportation fuel.
- Ammonia works well at high engine loads but a combustion promoter is needed at lower loads.
- Gasoline has previously been shown to be a good combustion promoter.
- What about ethanol? Ethanol can be grown locally, can be carbon neutral, etc...
- It would be very difficult or impossible to produce enough ethanol to displace all of the gasoline that we use. But we could produce enough to use it as a combustion promoter.
- But is ethanol a good ammonia combustion promoter?

Overview

- Experimental Engine
- Comparison of Ethanol and Gasoline Characteristics
- Ethanol/Ammonia Fuel Mix
- Comparison of Gasoline/Ammonia and Ethanol/Ammonia Fuel Mix Maps
- Comparison of Rough and Knock Limits
- Comparison of Thermal Efficiency
- Conclusions

Comparison of Ethanol Gasoline Properties

Properties	Gasoline	E85
RON	92	101
Density (g/cm ³)	0.74	0.79
Heat of combustion (MJ/kg)	42.4	32.6
Latent heat of vaporization (KJ/kg)	420	845
Stoichiometric Air Fuel Ratio	14.3	9.0

Characteristics of Ethanol

- Ethanol has a high antiknock quality due to its high octane number.
- Ethanol has a high latent heat of vaporization.
 - Advantage: Decreases the compressed gas temperature during the compression stroke.
 - Disadvantage: Property influencing cold start ability.

Experimental Investigations

Roughness Limit

- There are various methods to determine the cycle to cycle variability which determines the vehicle drivability.
- Pressure related parameters, burn rate related parameters, flame front position parameters.
- Pressure related quantities are the easiest and the efficient way to determine the cycle to cycle variability.
- > The IMEPn derived from the pressure data is expressed as Rough Limit= COV(IMEP_n) = σ_{imep} /IMEP_n×100

Knock Limit

The maximum gasoline fraction used to avoid knock

Efficiency

It is the ratio maximum work output to input.

Cooperative Fuel Research Engine (CFR) 83.4 mm bore diameter, 114.3 mm stroke, 625 cc swept volume displacement

Effect of Compression Ratio & Load on Combustion Promoter Input at Roughness Limit

The fraction of required promoter input decreases drastically as load is increased.

The required promoter input (%) is the same for both gasoline and ethanol mixtures at the roughness limit.

E85

Gasoline

The promoter input (%) decreases as compressed NH₃ density at spark increases.

8:1 and 10:1, E85/NH₃ 8:1 and 10:1, Gasoline/NH₃ 2.5 2.5 0 0 **1000 RPM** 1000 RPM 2 2 1300 RPM 1300 RPM ▲ 1600 RPM ▲ 1600 RPM soline E Spark y = -0.113x + 1.363y = -0.2258x + 1.57120.5 σ G 0 0 8 3 3 5 5 6 NH₃ Density @ Spark (kJ/l) NH₃ Density @ Spark (kJ/l)

Minimum gasoline requirement at spark = 1.36 Minimum E85 requirement at spark = 1.57

Both the fuels require almost the same energy/volume at the spark!!

Is Ammonia a Good Fuel?

The required promoter input decreases slightly as load is increased., showing that ammonia as a fuel having a slighter positive or neutral effect when used with both gasoline and ethanol at the rough limit.

Promoter Input, 10:1, All Speeds

How Does Promoter Input Vary with Speed?

Knock Limit

Knock and Rough Limit Crossover – Gasoline

%Gasoline decreases as total fuel input increases.

At some point there is a crossover between roughness limited minimum gasoline fraction and knock limited maximum gasoline fraction. The crossover occurs at 12:1 Compression Ratio.

Knock and Rough Limit Crossover – E85

The Crossover occurs at 13.5:1 Compression Ratio.

Thermal Efficiency At Rough Limit

Summary of Ethanol/NH3 Combustion put into figure...Fuel Mix Sweep at 1600 RPM, 10:1 and IMEP_n ~ 550 kPa.

Conclusions

- The knock and rough limit crossover occurs at ~13.5:1 for E85 and ~12:1 for gasoline.
- E85/NH3 has higher knock limit and allows for a higher maximum compression ratio and thermal efficiency.
- Gasoline/NH3 has a lower roughness limit and allows for a slightly more fuel mixture flexibility.
- The roughness limited promoter fraction is found to be almost the same for both (Ethanol &Gasoline) when used with Ammonia as the primary fuel.
- The fuel blend does not change much with speed.
- E85 is an attractive combustion promoter, like gasoline, when used with ammonia as the primary fuel.

Acknowledgement

Dennis Assanis , Chair, Dept. of Mechanical Engineering, University of Michigan
Stani Bohac, Research Scientist, Dept. of Mechanical Engineering, University of Michigan

Shawn Grannell, Doctoral Student, University of Michigan