Costs of Delivered Energy from Large-scale, Diverse, Stranded, Renewable Resources, Transmitted and Firmed as Electricity, Gaseous Hydrogen, and Ammonia

Ammonia: Key to US Energy Independence 9-10 Oct 06, Denver

> Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell

Preliminary Study

- Not rigorous; no charts; Holbrook: sanity checks
- Complete for future paper ?
- 2,000 MW (nameplate) Great Plains windplant
 - 40% CF
 - Large-scale, economies-of-scale
- What delivering? Where?
 - To "city gate" wholesale or end-users ?
 - Electricity, wholesale
 - Hydrogen
 - Ammonia: anhydrous, NH3
- Econ: Simple CRF (capital recovery factor) model, 15%. Low ?
- "Firm" renewables at annual scale ?
 - Add strategic, market value
 - Electricity: chemical "batteries"
 - Hydrogen: GH2, geologic, salt caverns
 - Ammonia: refrig tanks, 60K ton, \$25M capital + \$30K / year

Key Assumptions

- 1. 2,000 MW windplant = 2,000 MWh / hr at full output
- 2. AEP: 2,000 MW (nameplate) Great Plains windplant @ 40% CF, 100% energy equivalent:
 - 7,008,000 MWh / yr
 - 195,754 tons H2 / yr
 - 1,087,523 tons NH3 / yr
- 3. 1,000 mile transmission to city gate market
 - 20" GH2 pipeline
 - 10" NH3 pipeline
- 4. Installed capital costs year 2020 @ year '05 \$US:
 - Wind generators: \$1,000 / kW
 - Electrolyzers: \$350 / kW
- 5. Benchmark: actual Xcel Energy wind-generated electric energy, at wind plant gate:
 - \$ 0.057 / kWh unsubsidized
 - \$ 0.038 / kWh with PTC = \$ 0.019 / kWh

Key Assumptions

- 6. NH3 delivered as liquid; no reforming to H2
- 7. NH3 tank storage at sources; maximize pipeline CF
- 8. 500 and 1,000 mile pipelines (2 cases) (only 1,000 mile here)
- 9. Large-scale for all components:
 - GW sources and conversions (synthesis, cracking)
 - >10,000 ton liquid NH3 storage
- 10. 150 tph pipeline, 10" diam, .25" wall thick, 1,300 psi nominal, 1,500 MAOP
- 11. X42 or Grade B carbon steel line pipe, welded, 35 42,000 psi
- 12. 150 tph flow = 300,000 lbs / hr = 52,817 gal / hr
- 13. Annual capital cost @ 15% CRF

Further study; major uncertainties

- Both 500 and 1,000 mile transmission distance
- NH3 reformer (dissociator, cracker) capital costs, efficiency
- Use higher, less-optimistic capital costs
- Use higher CRF (capital recovery factor): 18%? 20%? Risk premium?
- More accurate NH3 pipeline pumping power and cost analysis
- More accurate NH3 synthesis plant capital costs and efficiencies, when H2 supplied by 30-bar-output electrolyzers

Cases considered: 2,000 MW (nameplate)Great Plains Windplant

- 1. HVDC electricity: 50% of 3,000 MW line
- 2. Elec \rightarrow GH2 \rightarrow Gas Pipeline \rightarrow City gate wholesale
 - a. Without firming storage
 - b. With firming storage
- 3. Elec \rightarrow GH2 \rightarrow NH3 \rightarrow Liquid Pipeline \rightarrow City gate wholesale
 - a. Without firming storage
 - b. With firming storage
- 4. Elec \rightarrow GH2 \rightarrow NH3 \rightarrow Liquid Pipeline \rightarrow Reform to H2
 - a. Without firming storage
 - b. With firming storage

Conclusions: Cases 1 - 4

Conversion + transmission costs per kg H2

	No firming	Firmed
1: HVDC electricity	\$ 0.54	
2: GH2 pipeline	\$ 1.94	\$ 2.01
3: NH3 pipeline, deliver NH3	\$ 2.57	\$ 2.65
4: NH3 pipeline, deliver GH2	\$ 3.20	\$ 3.28

Trouble with Renewables

- Diffuse, dispersed: gathering cost
- Richest are remote: "stranded"
- Time-varying output:
 - "intermittent"
 - "firming" storage required
- Transmission:
 - low capacity factor (CF) or curtailment
 - NIMBY
- Distributed or centralized ?

Trouble with Electricity Transmission

- Grid nearly full
 - New wind must pay for transmission
 - Costly: AC or DC
- NIMBY
- Low capacity factor or curtailment
- No storage: smoothing or firming
- Overhead towers vulnerable: God or man
- Underground: Only HVDC

Trouble with GW-scale wind today

- Grid nearly full
 - New wind must pay for transmission
 - Costly: AC or DC
- "Cherry-picked" windplants, to date
 - Best wind sites
 - Low-cost transmission access
- Depend on PTC: \$0.019 / kWh
- No storage: smoothing or firming

2,000 MW windplant output

100 % Capacity Factor

	MWh/day	tons/hr	tons/day	tons/yr
As electricity	48,000			
As H2		311	1,342	489,776
As NH3		1,726	7,455	2,720,980
10" NH3 pipeline capa	city as NH3	3 15	0 3,600	1,314,000
10" NH3 pipeline capa	city as H2	27	648	236,520

40 % Capacity Factor

MW	/h/day	tons/hr	tons/day	tons/yr
As electricity 19,2	200			
As H2		124	537	195,910
As NH3		690	2,982	1,088,392
10" NH3 pipeline capacity	as NH3	3 60	1,440	525,600
10" NH3 pipeline capacity	as H2	11	259	94,608

NH3 Pipeline Capacity

• 10" diam

- 150 tons per hour (tph)
- 1.3 million tons per year (tpy)
- Extrapolation
 - 8" diam =~ 90 tph
 - 6" diam =~ 50 tph
 - 4" diam =~ 15 tph
- Total USA annual NH3 use:

3-5 million tons, as anhydrous

Total Windplant – H2 System Installed Capital Cost: GW scale \$US million

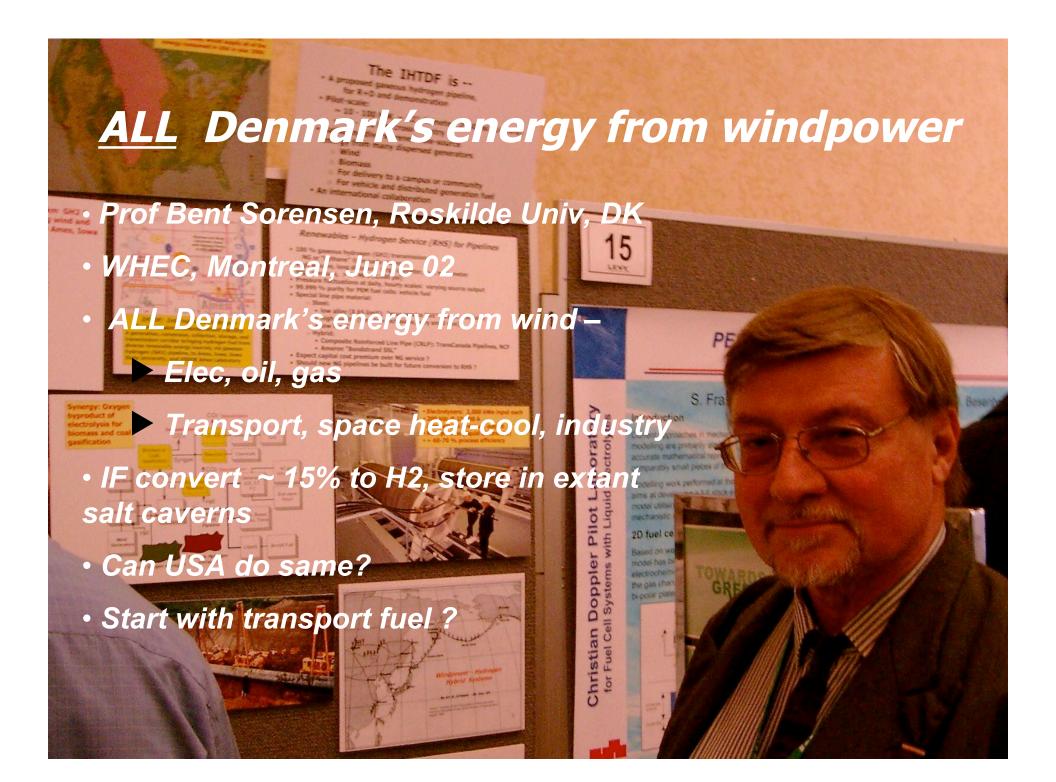
Windplant size	1,000 MW	2,000 MW
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Transmission	??	??
TOTAL	\$ 1,500	\$ 3,000
@ 15% CRF*	\$ 225	\$ 450
Average cost / kWh		
(unsubsidized)	\$ 0.064	\$ 0.064
* ~		

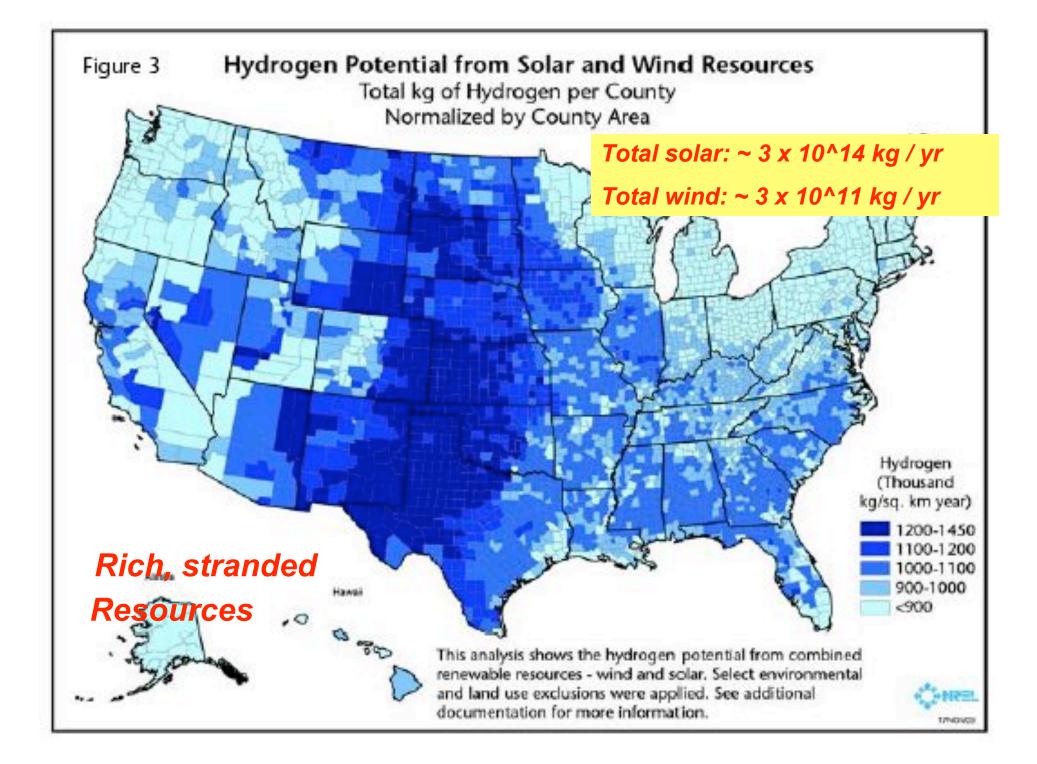
Capital Recovery Factor: annual cost

Exporting From 12 Windiest Great Plains States

Number of GH2 pipelines or HVDC electric lines necessary to export total wind resource Wind energy source: PNL-7789, 1991 * at 500 miles average length

State	AEP, TWh	Wind Gen MW (nameplate) (40% CF)	6 GW 36″ GH2 export pipelines	\$ Billion Total Capital Cost *	3 GW export HVDC lines	\$ Billion Total Capital Cost *
North Dakota	1,210	345,320	50	50	100	60
Texas	1,190	339,612	48	48	100	60
Kansas	1,070	305,365	43	43	100	60
South Dakota	1,030	293,950	41	41	100	60
Montana	1,020	291,096	41	41	90	54
Nebraska	868	247,717	35	35	80	48
Wyoming	747	213,185	30	30	70	42
Oklahoma	725	206,906	29	29	60	36
Minnesota	657	187,500	26	26	60	36
lowa	551	157,249	22	22	50	30
Colorado	481	137,272	19	19	40	24
New Mexico	435	124,144	17	17	40	24
TOTALS	9,984	2,849,316	401	\$ 401	890	\$ 534

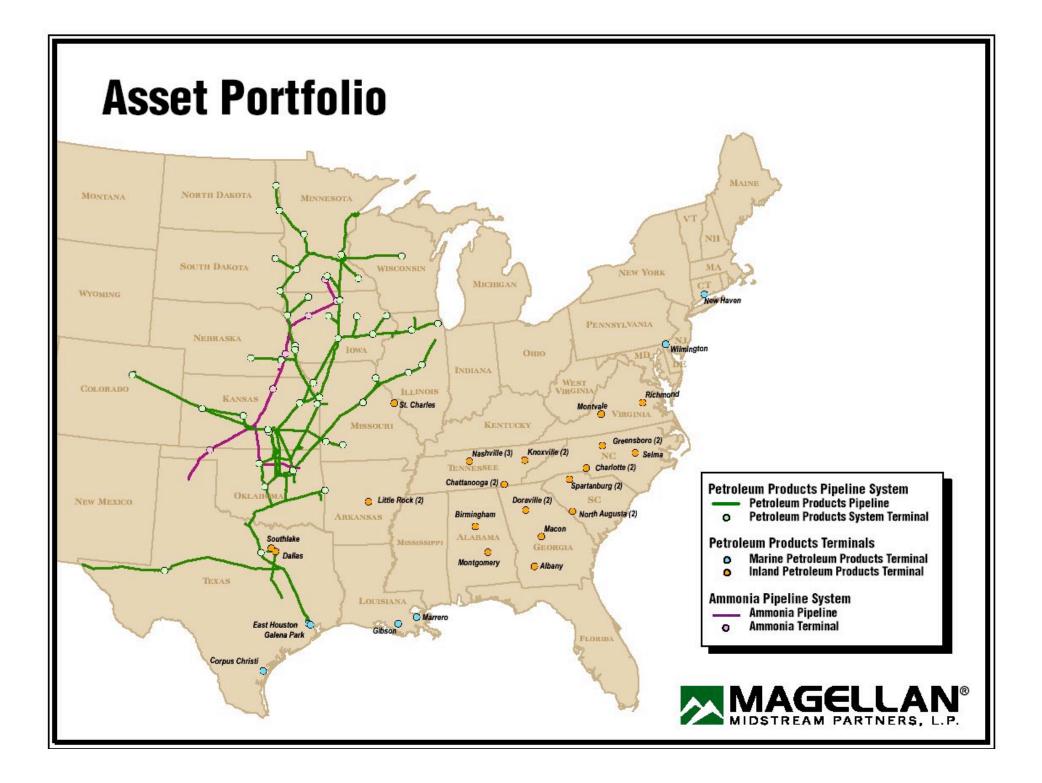

Great Plains Wind: Huge, Stranded


Total USA energy: 100 quads = 10,000 TWh

attaining occas

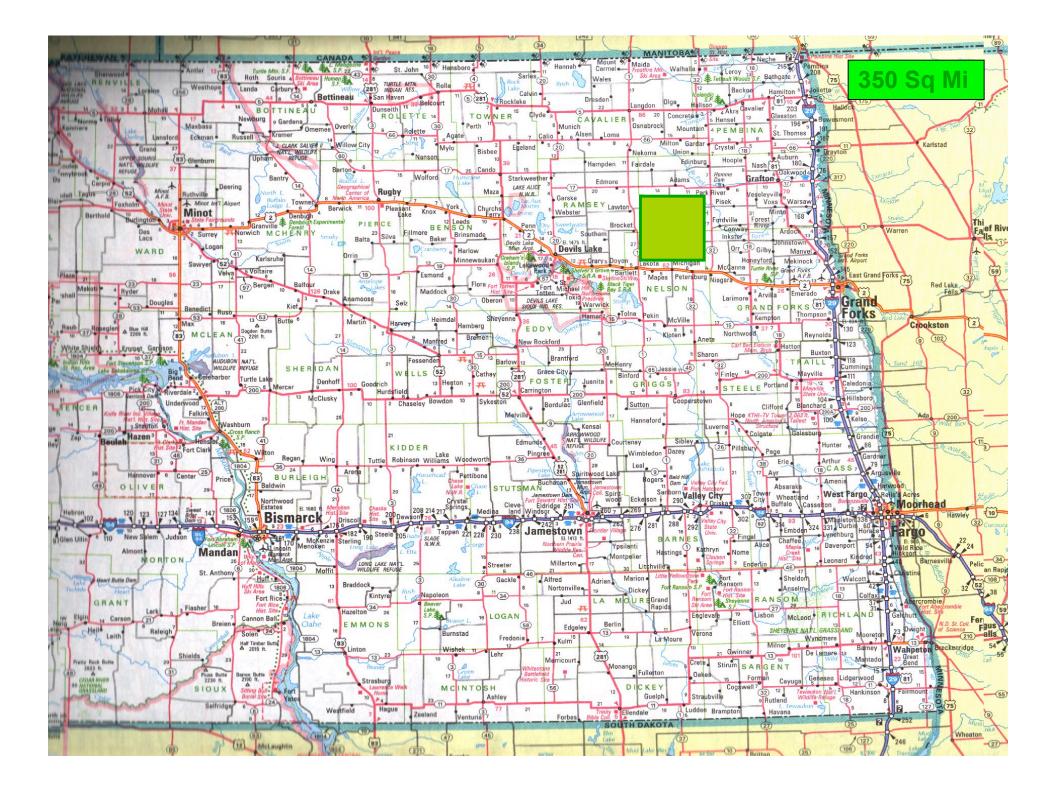
• Big Market: Hydrogen Fuel, not Grid Electricity

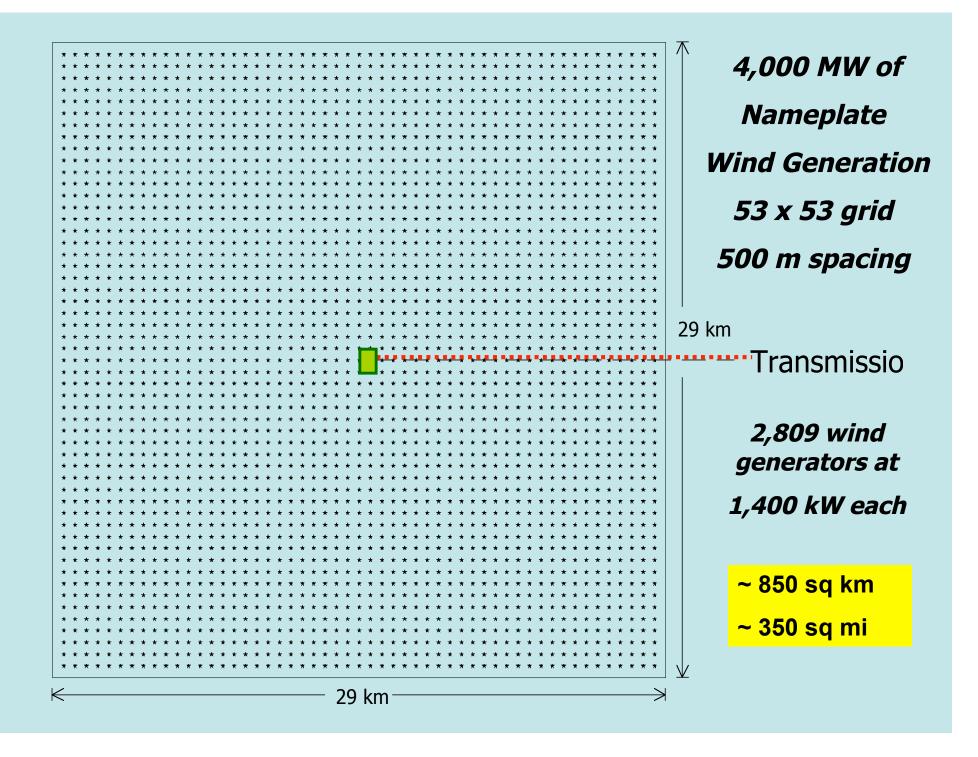
Accelerate Conversion from Fossil

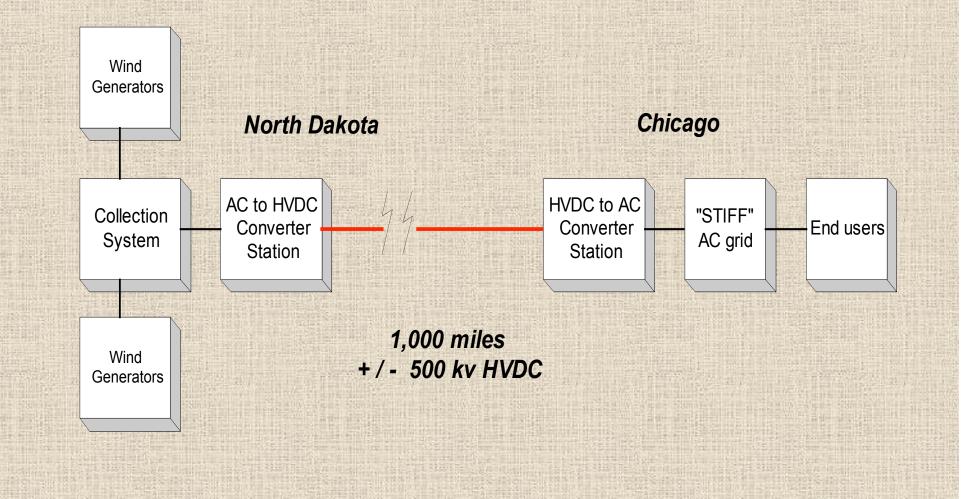



GW-scale Transmission Options: Stranded Renewables

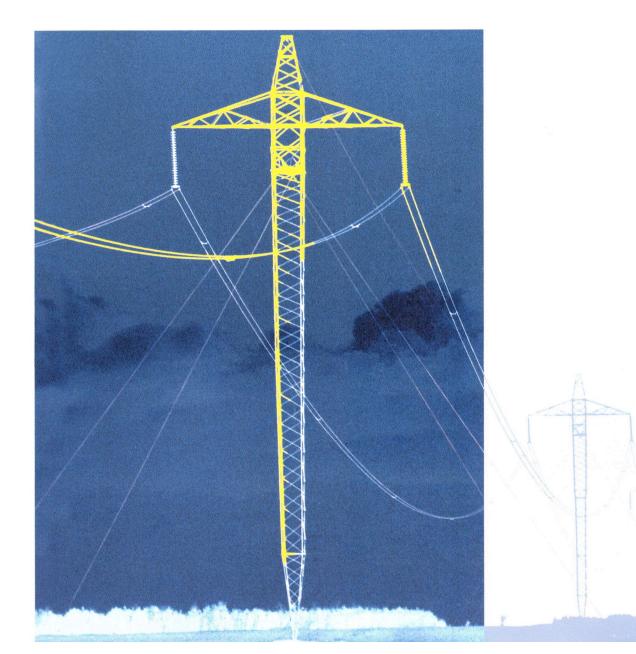
- Electricity:
 - Overhead: HVAC, HVDC
 - Underground: HVDC
- Gaseous Hydrogen (GH2) pipeline
 - 100% GH2; purity
 - "Hythane"; "NaturalHY", EC, Gasunie Research NL
- Liquid Hydrogen (LH2) pipeline, truck, rail car, ship
- Ammonia (NH3) gas, liquid: pipeline, truck, rail car, ship
- Liquid synthetic HC's zero net C
 - SNG, "synthane" CH4
 - FTL's: Fischer Tropsch liquids
 - CH3OH (methanol); DME (dimethyl ether)
 - Cyclohexane benzene (2 pipelines)
 - Silanes: Si₁₀H₂₂
- "Energy Pipeline": EPRI
 - SC, LVDC: ~ 100 GW
 - LH2: ~ 100 GW
- Al Ga $\leftarrow \rightarrow$ Alumina


GW-scale Transmission Options: Stranded Renewables


- Electricity:
 - Overhead: HVDC, HVAC
 - Underground: HVDC
- Gaseous Hydrogen (GH2) pipeline
 - 100% GH2; purity
 - "Hythane"; "NaturalHY", EC, Gasunie Research NL
- Liquid Hydrogen (LH2) pipeline, truck, rail car, ship
- Ammonia (NH3) gas, liquid: pipeline, truck, rail car, ship
- Liquid synthetic HC's zero net C
 - SNG, "synthane" CH4
 - FTL's: Fischer Tropsch liquids
 - CH3OH (methanol); DME (dimethyl ether)
 - Cyclohexane benzene (2 pipelines)
 - Silanes: Si₁₀H₂₂
- "Energy Pipeline": EPRI
 - SC, LVDC: ~ 100 GW
 - LH2: ~ 100 GW
- Al Ga $\leftarrow \rightarrow$ Alumina



Valero LP Operations



"Electrical Transmission" Scenario

High Voltage Direct Current Transmission

North Dakota wind needs 115 new lines at 3,000 MW each

Twelve Plains states wind needs 890 new lines at 3,000 MW each

> SIEMENS HVDC line +/- 500 kv

Left: 3,000 MW HVDC (Pacific DC Intertie, PDCI) Right

Right: HVAC

Case 1:

HVDC electricity: 50% of 3,000 MW line

•	Point-to-point	system:	one "on	ramp"
---	----------------	---------	---------	-------

- Overhead lines, only
- Wholesale delivery to substation at city gate
- Capital costs
 - Converter station pair @ \$140 / kW = \$420 M

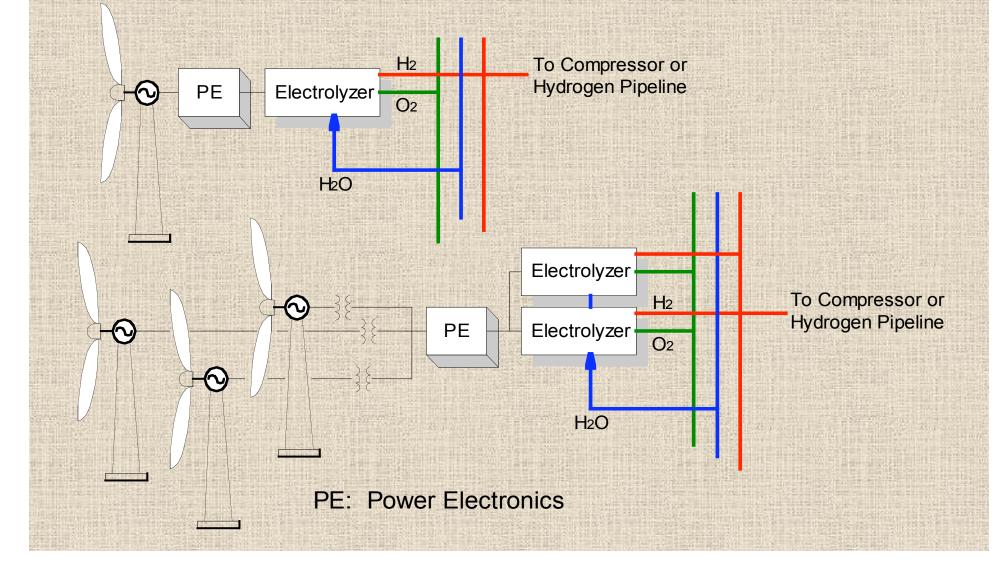
S

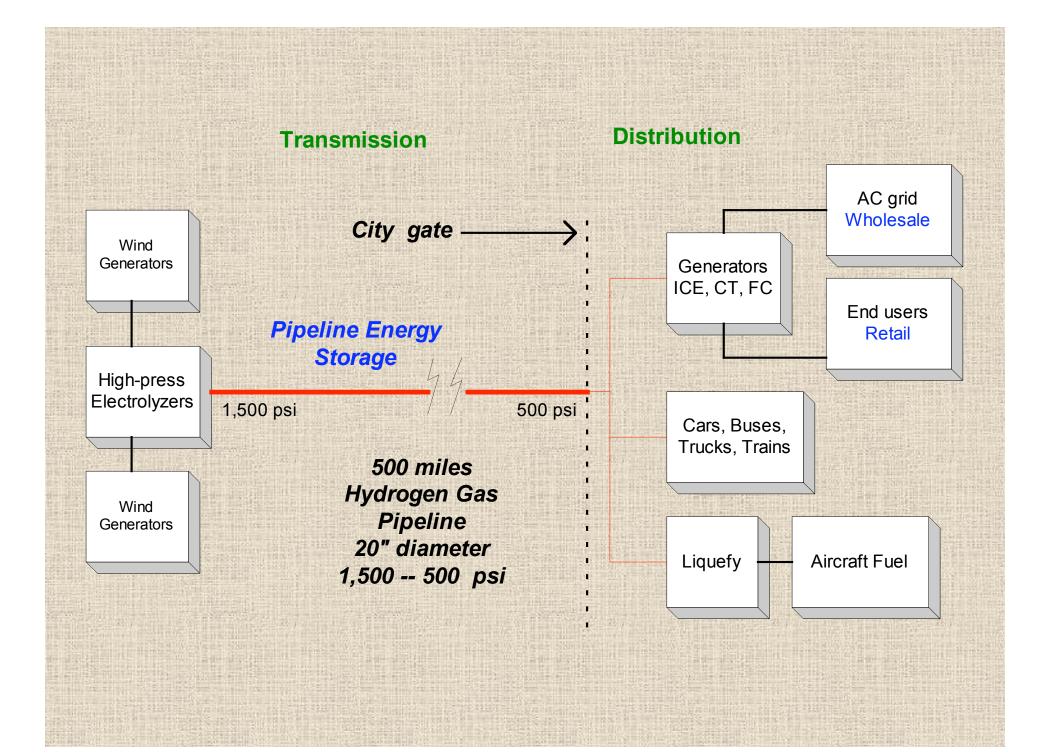
- Line @ \$500K / mile = 500 M
- Design, permitting, etc. = \$80 M
- Total = \$1,000 M
- 50% allocated tp 2,000 MW windplant = \$ 500 M

Case 1: Transmission annual costs HVDC electricity 2,000 MW windplant AEP = 7,008,000 MWh

•	Capital costs @ 15% CRF @ \$ 500 M (allocated)	\$ 75 M
•	Conversion and Transmission losses:	
	 Converter station pair @ 0.65% each = 1.3% 	
	– Lines @ 0.4% per 100 km @ 1,600 km = 6.4%	
	– Total = 7.7% @ AEP = \$399,456,000 =	<u>\$ 31 M</u>
	TOTAL annual costs	\$ 106 M
	Annual cost per ton H2 = \$ 541	
	Annual cost per kg H2 = \$ 0.54	

Case 1: Firming storage HVDC electricity: 50% of 3,000 MW line


Energy storage:


- Sodium-sulfur battery:
 - 1 MW, 7 MWh capacity = capital cost \$300 / kW installed = \$2.1 M
 - In / out efficiency ~ 85%
 - Assume
 - 100 MW = 100 x \$ 2.1 M = \$ 210 M

Assume: 100 MW enough capacity to capture

- 840,000 MWh seasonal firm = 120,000 x \$ 1.5 M = \$ 180 B Assume \$ 1.5 M of \$ 2.1 M is batteries
- Vanadium-redox battery (VRB): should cost less; larger scale

"Hydrogen Transmission Scenario" Collection Topology Options: Electrolyzer and Rectifier Location

Total Installed Capital Cost 1,000 mile pipeline, \$US million

Windplant size	1,000 MW	2,000 MW
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Pipeline, 20"	<u>930</u>	930
TOTAL	\$ 2,430	\$ 3,930

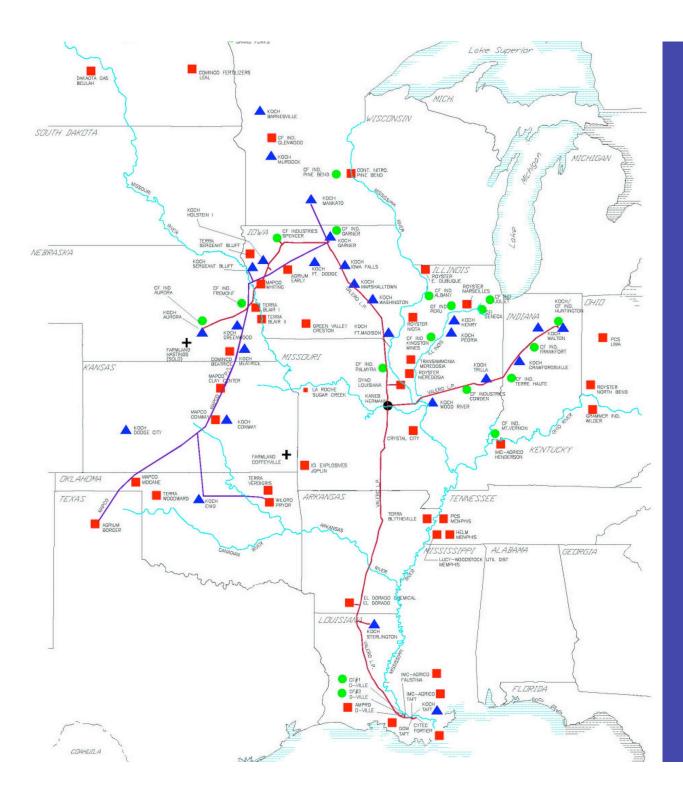
Total Installed Capital Cost 1,000 mile Pipeline "Firming" GH2 cavern storage

Windplant size	1,000 MW	2,000 MW
	[million]	[million]
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Pipeline	930	930
# storage caverns	[6]	[12]
Caverns @ \$10M ea	60	120
Cushion gas @ \$5M e	ea <u>20</u>	40
TOTAL	\$ 2,510	\$ 4,050

Cavern storage: 6 % of total capital cost

Annual – scale "Firming" Great Plains Wind

- Potential, 12 states, ~50% land area:
 - 10,000 TWh = 100 quads = entire USA energy
 - 2,800,000 MW nameplate
- Seasonality:
 - Summer minimum
 - Spring Summer maximum storage
 - "Firming" energy storage, per 1,000 MW wind:
 - as electricity = 450 GWh
 - as GH2 = 15,712 tons, metric @ 2,500 tons / cavern = 6 caverns
 - as NH3 = 87,291 tons, metric @ 60,000 tons / tank = 1.4 tanks
 - "Firming" energy storage, all great Plains wind:
 - as GH2 = 17,000 caverns @ \$15M each = \$264 billion
 - as NH3 = 5,000 tanks @ \$25M each = \$127 billion


"Firming" Storage Capital Cost for ALL Great Plains Wind Adds VALUE: strategic, market

Salt caverns: ~ 17,000

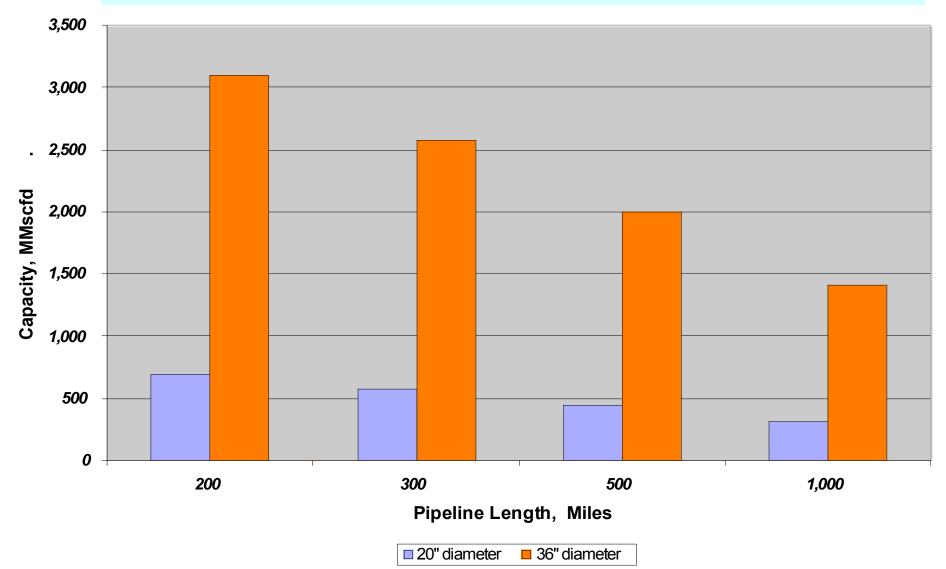
 Excavate: 	\$10 M each	\$ 170 B
 Cushion gas: 	\$5 M each	\$85 B
Total		\$255 B

- NH3 tanks: ~ 5,000
 - Capital \$25 M each

\$125 B

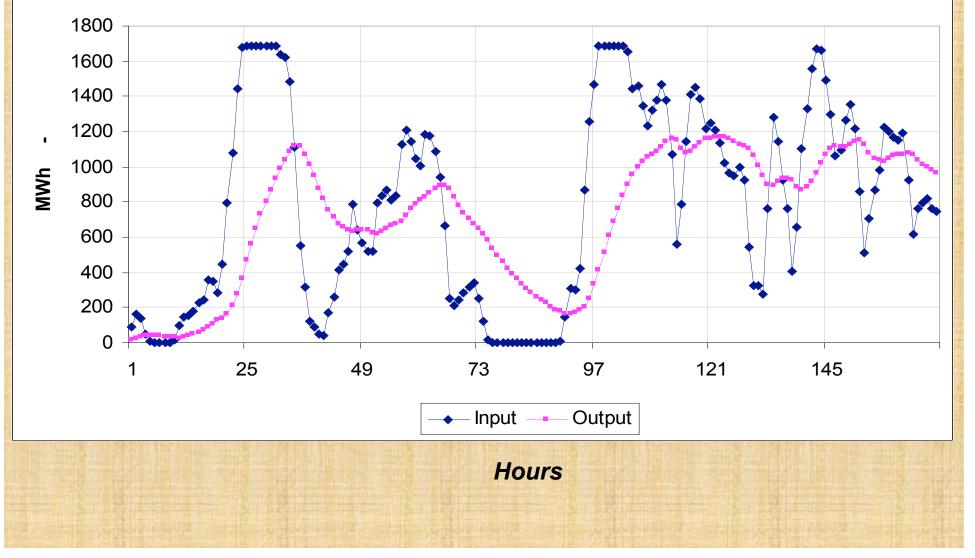
Valero Ammonia Pipeline and Customer Storage

Customers:

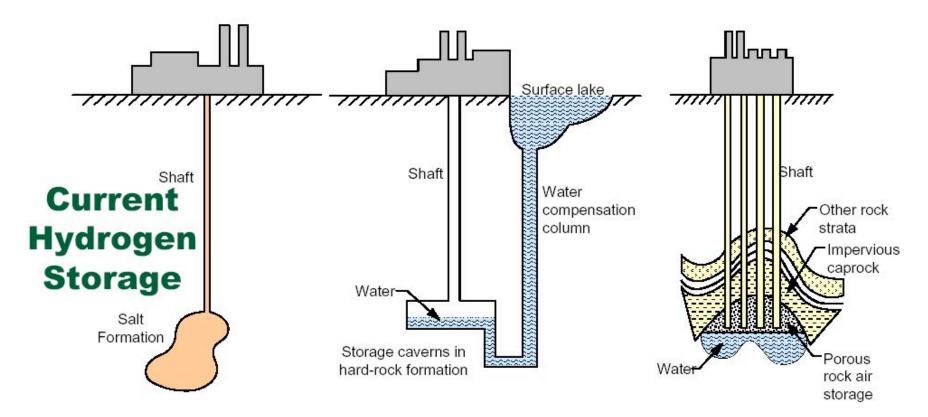

- Koch (26)
- CF Industries (20)
- Farmland (2)

Extant NH3 Storage in USA (estimated)

 Valero Magellan / Other 	Enterprise	Tanks	Tons
	anks @ 50,000 tons		4,500,000
Equivalent:	H2 (18%) TWh		810,000



20", 36" GH2 Pipeline Capacity 1,500 psi IN / 500 psi OUT


Great Plains Windplant, Pipeline Hourly Output for Typical Week

Hourly Hydrogen Pipeline Input and Output

From: Charles W. Forsberg, ORNL, 17th NHA Conference, 12-16 Mar 06

Hydrogen Can Be Stored Underground At Low Costs

Natural Gas Stored Underground

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Renewable-source GH2 geologic storage potential. Candidate formations for manmade, solution-mined, salt caverns

Case 2a: No Firming Elec \rightarrow GH2 \rightarrow GH2 pipeline \rightarrow City gate

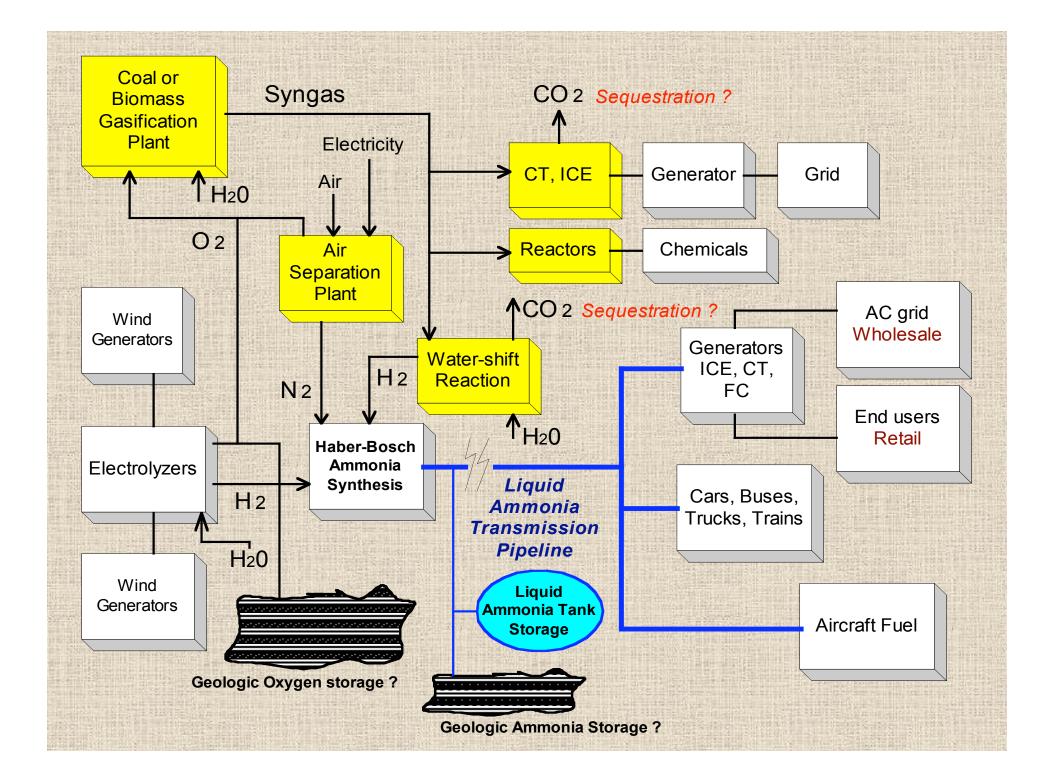
Capital costs

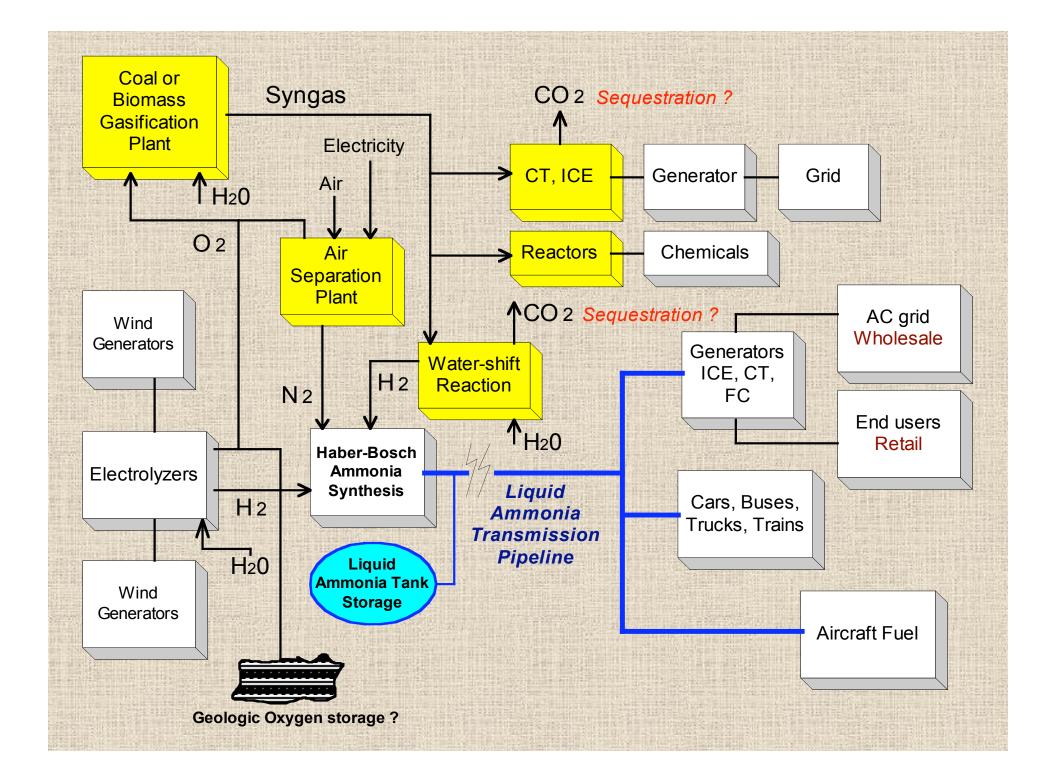
—	Electrolyzers, 1500 psi out @ \$500 / kW	\$ 1 ,	000 M
_	Electrolyzer power electronics saving	\$	0 M
_	Compressors	\$	0 M
_	Pipeline, 20", 1500 psi		<u>\$</u>
	<u>1,000 M</u>		
	Total, without firming storage	\$ 2 ,	000 M

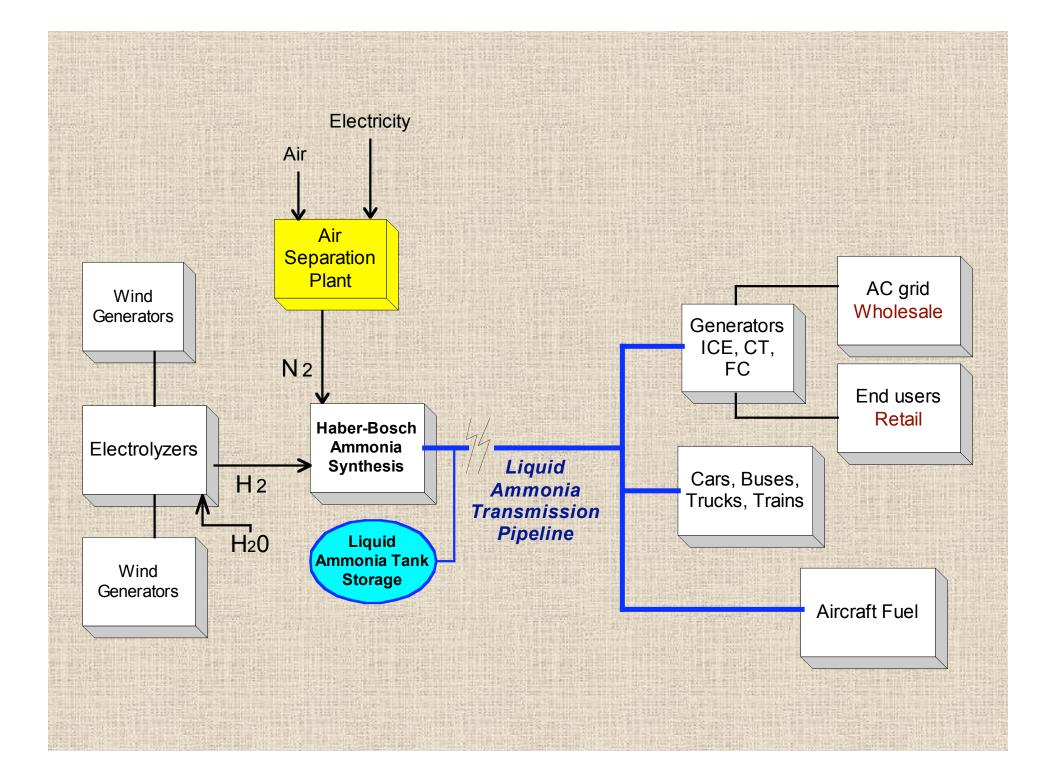
Case 2a: Annual costs, no firming Elec \rightarrow GH2 \rightarrow GH2 pipeline \rightarrow City gate

•	Capital costs @ 15% CRF @ \$2,000 M	\$ 300 M
•	Conversion and transmission losses Electrolyzer conversion loss @ 20% AEP 	\$ 80 M
	 Compression 	<u>\$0M</u>
	Total annual costs Annual cost per mton H2 AEP = \$ 1,940 Annual cost per kg H2 AEP = \$ 1.94	\$ 380 M

Case 2b: Firming Elec \rightarrow GH2 \rightarrow GH2 pipeline + caverns \rightarrow City gate


Capital costs

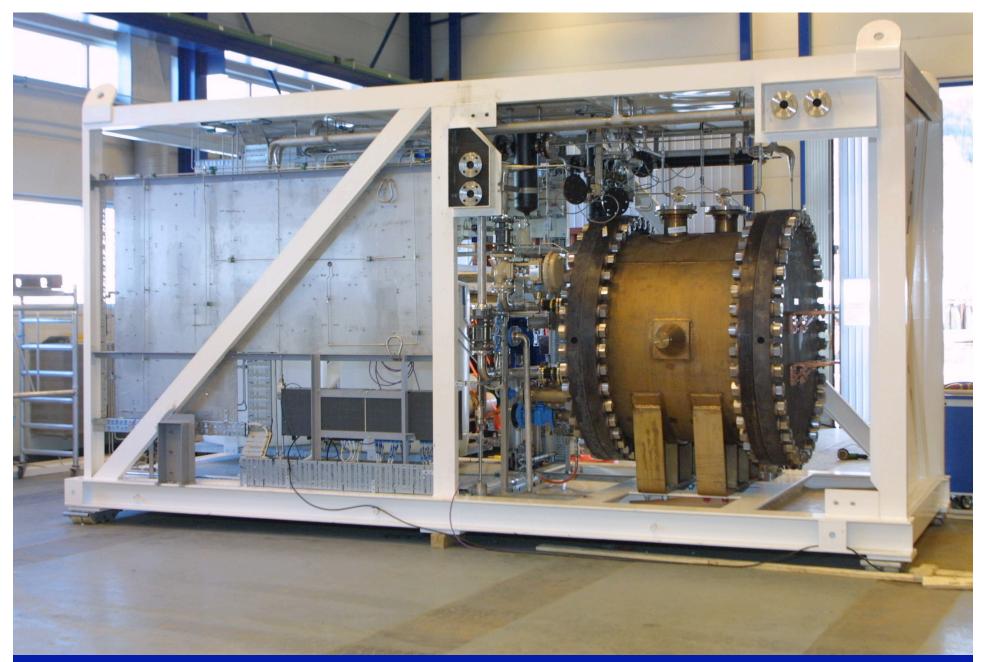

_	Electrolyzers, 1500 psi out @ \$500 / kW	\$1,	000 M
_	Electrolyzer power electronics saving	\$	0 M
_	Compressors	\$	0 M
-	Pipeline, 20", 1500 psi 1,000 M		\$
_	Caverns, 12 @ \$ 15M	\$	90 M
	Total, with firming storage	\$ 2,	090 M


Incremental capital cost of caverns = 90 / 2090 = ~ 4% Incremental capital cost of caverns, system = 90 / 4090 = ~ 2%

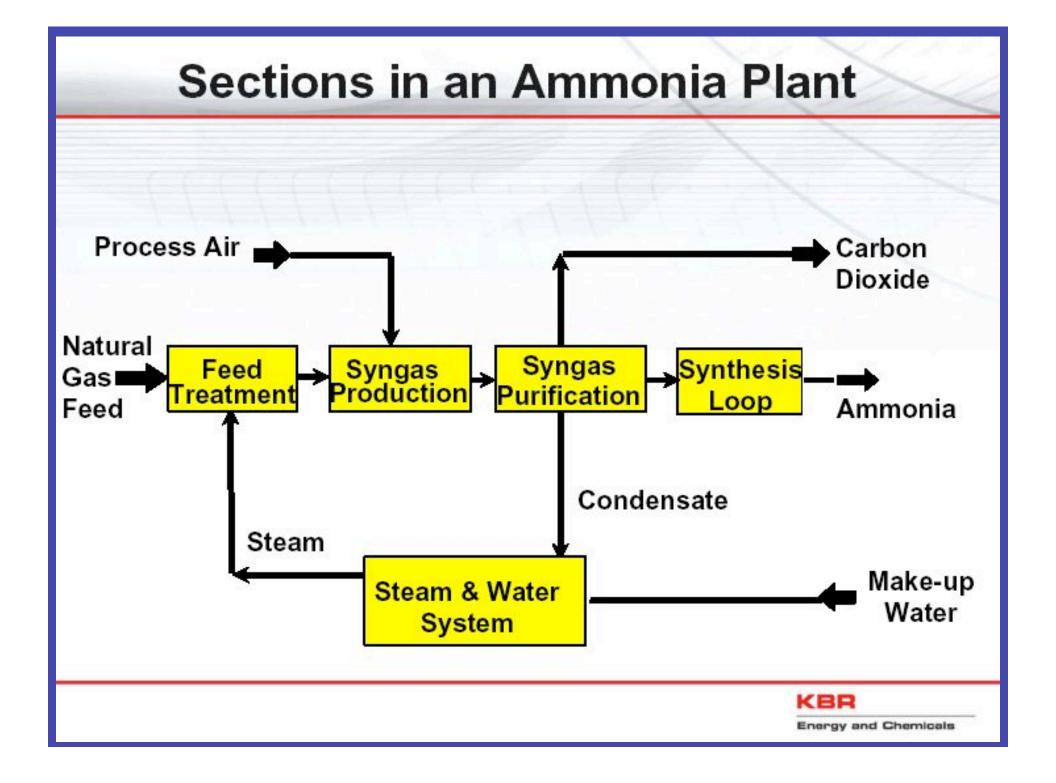
Case 2b: Annual costs, Firming Elec → GH2 → GH2 pipeline → City gate

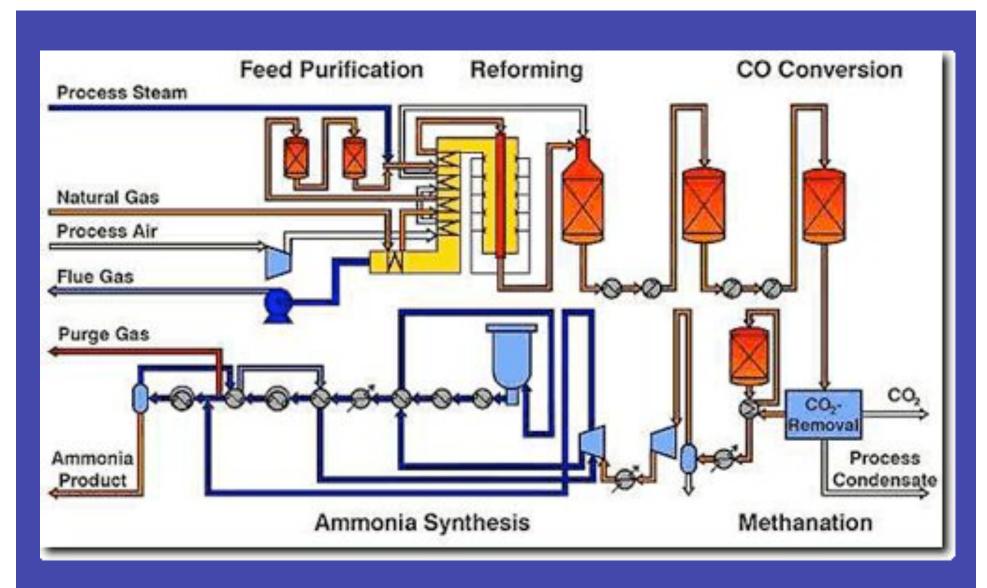
• Capital costs @ 15% CRF @ \$2,090 M	\$ 313 M
 Conversion and transmission losses Electrolyzer conversion loss @ 20% AEP 	\$ 80 M
 Compression 	\$0M
 Caverns in / out 	\$0M
Total annual costs Annual cost per ton H2 = \$2,010 Annual cost per kg H2 = \$2.01	\$ 393 M

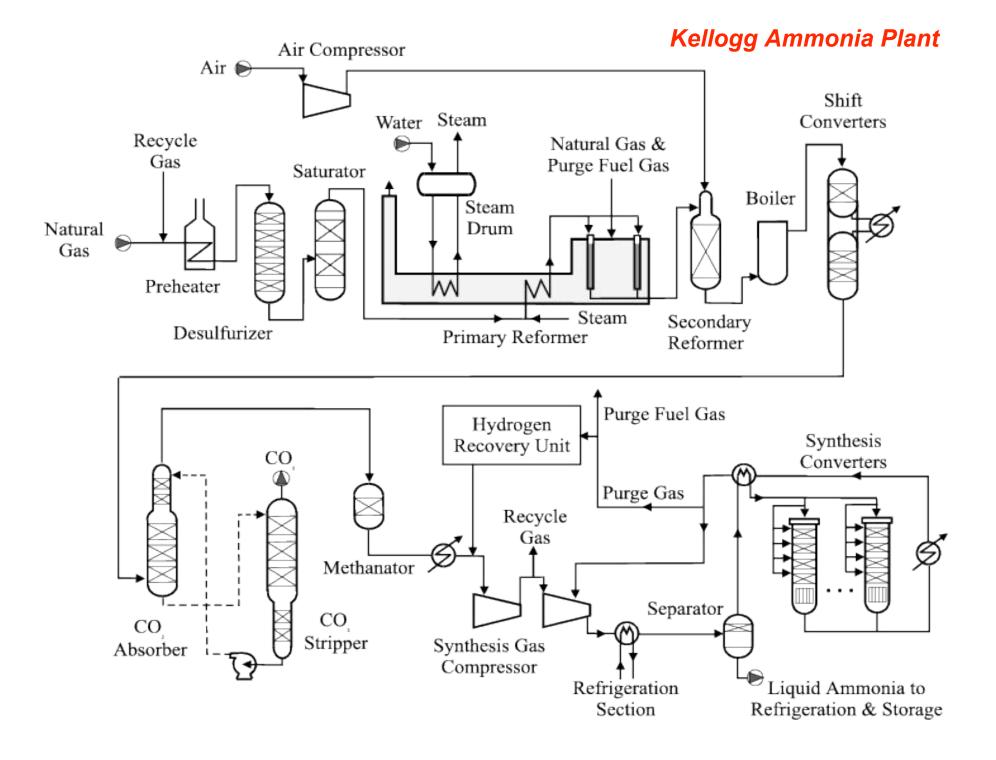
2,000 MW windplant output


100 % Capacity Factor

	MWh/day	tons/hr	tons/day	tons/yr
As electricity	48,000			
As H2		311	1,342	489,776
As NH3		1,726	5 7,455	2,720,980
10" NH3 pipeline cap	acity as NH3	3 15	0 3,600	1,314,000
10" NH3 pipeline cap	acity as H2	27	648	236,520


40 % Capacity Factor


	MWh/day	tons/hr	tons/day	tons/yr
As electricity	19,200			
As H2		124	537	195,910
As NH3		690	2,982	1,088,392
10" NH3 pipeline cap	acity as NH3	60	1,440	525,600
10" NH3 pipeline cap	acity as H2	11	259	94,608


Norsk Hydro electrolyzer, KOH type 560 kW input, 130 Nm3 / hour at 450 psi (30 bar)

Natural Gas to Ammonia Plant

"Flue Gas": CO2

NH3 Synthesis Plant Cost 3,000 tpd NH3 = 675 tpd H2 @ 80% efficiency: Need TWO plants for 2,000 MW windplant

- Industry sources:
 - 2,000 mtd NH3, NG source, all costs \$500M
 - 2,200 mtd NH3, NG source, all cocts \$466M
 - 140 mmscfd H2 plant costs ~ \$200M
 - NG conversion, all processes: ~ 60% of total capital cost
 - Delete NG conversion, must add N2 plant (ASP) (estim: \$75M)
- 3,000 tpd NH3 plant, from renewable-source H2, costs:

-	NG conversion (SMR +)	\$ 0
_	H-B reactor	\$ 225 M
_	Balance Of Plant	\$ 75 M
_	Add Air Separation Plant, for N2	\$ 75 M
_	Add H2 compressor (30 \rightarrow 100 bar)	\$ 5 M
	TOTAL	\$ 380 M
	TWO PLANTS	\$ 760 M

10" NH3 liquid pipeline cost

- Industry sources, all costs:
 - \$750 900 K per mile, 10",

"uncongested area"

- \$250K per mile "small diameter"
- 1,000 mile pipeline @ 10" = \$ 800M

Case 3a: No firming Elec \rightarrow GH2 \rightarrow NH3 \rightarrow Liquid Pipeline \rightarrow City gate

Capital costs

-	Electrolyzers, 450 psi out @ \$350 / kWe	\$	700 M
_	Electrolyzer power electronics saving	\$	0 M
_	H2 compressors	\$	10 M
_	NH3 synthesis plants (2)	\$	750 M
_	Pipeline	\$	800 M
_	Pipeline pumping	\$	6 M
—	Pipeline infrastructure	<u>\$</u>	<u>2 M</u>
Tot	al, without firming storage	\$	2,268 M

Case 3a: Annual costs, no firming Elec → GH2 → NH3 → Liquid Pipeline → City gate

•	Capital costs @ 15% CRF @ \$ 2,268 M	\$ 340 M
•	Conversion and transmission losses – Electrolyzer conversion loss @ 20% AEP	\$ 80 M
	 Compression energy 	\$ 1 M
	 NH3 synthesis plant 	\$ 80 M
	 Pipeline pumping energy 	\$ 2 M
	 Pipeline misc O&M 	\$1M
	Total annual costs Annual cost per mton H2 = \$ 2,572 Annual cost per kg H2 = \$ 2.57	\$ 504 M

Case 3b: Firming storage, tanks Elec → GH2 → NH3 → Liquid Pipeline + tanks → City gate


Capital costs

_	Electrolyzers, 450 psi out @ \$350 / kWe	\$	700 M
-	Electrolyzer power electronics saving	\$	0 M
-	H2 compressors	\$	10 M
-	NH3 synthesis plant	\$	750 M
—	Pipeline	\$	800 M
_	Pipeline pumping	\$	8 M
—	Pipeline infrastructure	\$	2 M
—	Tanks: 4 tanks @ \$ 25 M	<u>\$</u>	<u>100 M</u>
Tot	al, with firming storage	\$ 2	,370 M

Incremental capital cost of caverns = 90 / 2370 = ~ 4% Incremental capital cost of caverns, system = 90 / 4370 = ~ 2%

Case 3b: Annual costs, Firming storage, tanks Elec → GH2 → NH3 → Liquid Pipeline + tanks → City gate

•	Capital costs @ 15% CRF @ \$ 2,370	\$ 356 M
•	Conversion and transmission losses	
	 Electrolyzer conversion loss @ 20% AEP 	\$ 80 M
	– Compression	\$1M
	 NH3 synthesis plants (2) 	\$ 80 M
	 Pipeline pumping energy 	\$ 2 M
	 Pipeline misc O&M 	\$1M
	– Tank in / out	<u>\$0M</u>
	Total annual costs	\$ 520 M
	Annual cost per ton H2 = \$ 2,650	
	Annual cost per kg H2 = \$2.65	

Direct Ammonia Fuel Cell using PCC Electrolyte

Case 4a: No firming Elec \rightarrow GH2 \rightarrow NH3 \rightarrow Liquid Pipeline \rightarrow Reform to H2

Capital costs

-	Electrolyzers, 450 psi out @ \$350 / kWe	\$ 700	Μ
_	Electrolyzer power electronics saving	\$ 0	Μ
_	H2 compressors	\$ 10	Μ
_	NH3 synthesis plants (2)	\$ 750	Μ
—	Pipeline	\$ 800	Μ
_	Pipeline pumping	\$ 8	Μ
_	Pipeline infrastructure	\$ 2	Μ
_	NH3 reformers (dissociate; crack)	\$ 418	Μ
Total, without firming storage		\$ 2,688	Μ

Case 4a: Annual costs, no firming Elec → GH2 → NH3 → Liquid Pipeline → Reform to H2

•	Capital costs @ 15% CRF @ \$ 2,688 M	\$ 403 M
•	Conversion and transmission losses	
	 Electrolyzer conversion loss @ 20% AEP 	\$ 80 M
	 Compression energy 	\$ 1 M
	 NH3 synthesis plant 	\$ 80 M
	 Pipeline pumping energy 	\$ 2 M
	 Pipeline misc O&M 	\$ 1 M
	 Reformer conversion loss @ 15% AEP 	\$ 60 M
	Total annual costs	\$ 627 M
	Annual cost per mton H2 = \$ 3,200	
	Annual cost per kg H2 = \$ 3.20	

Case 4b: Firming storage, tanks Elec → GH2 → NH3 → Liquid Pipeline → Reform to H2

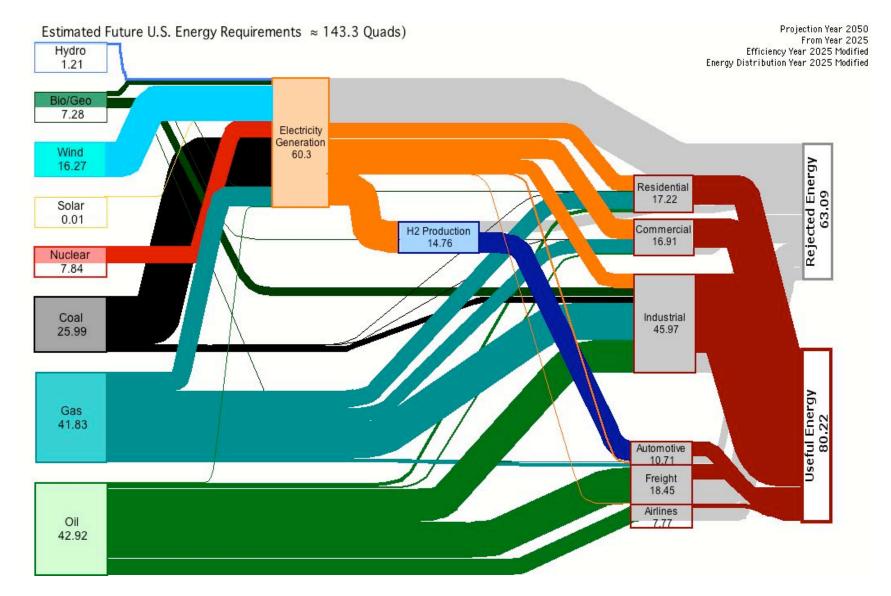
Capital costs

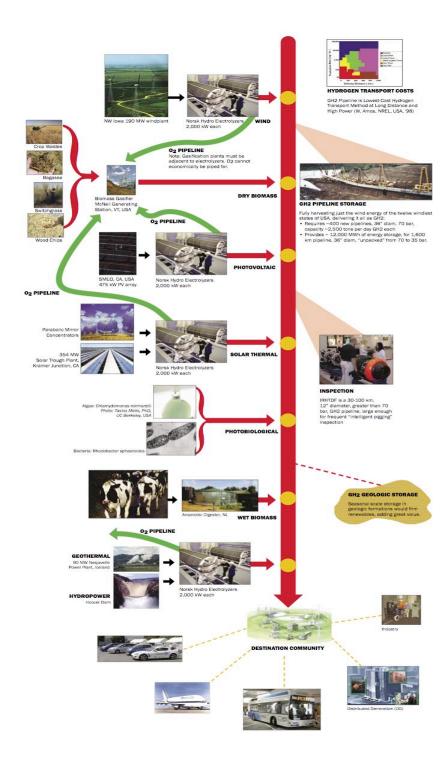
_	Electrolyzers, 450 psi out @ \$350 / kWe	\$ 700 M
_	Electrolyzer power electronics saving	\$ 0 M
_	H2 compressors	\$ 10 M
_	NH3 synthesis plant	\$ 750 M
_	Pipeline	\$ 800 M
_	Pipeline pumping	\$ 8 M
_	Pipeline infrastructure	\$ 2 M
_	Tanks: 4 tanks @ \$ 25 M	\$ 100 M
_	Reformers (dissociate, crack)	\$ 418 M
Tota	al, with firming storage	\$ 2,788 M

Case 4b: Annual costs, Firming storage, tanks Elec → GH2 → NH3 → Liquid Pipeline → Reform to H2

•	Ca	apital costs @ 15% CRF @ \$ 2,788 M	\$ 418 M
•	С	onversion and transmission losses	
	_	Electrolyzer conversion loss @ 20% AEP	\$ 80 M
	_	Compression energy	\$ 1 M
	—	NH3 synthesis plant	\$ 80 M
	_	Pipeline pumping energy	\$ 2 M
	_	Pipeline misc O&M	\$ 1 M
	-	Reformer conversion loss @ 15% AEP	\$ 60 M
		Total annual costs	\$ 642 M
		Annual cost per mton H2 = \$ 3,277	
		Annual cost per kg H2 = \$ 3.28	

Conclusions: Cases 1 - 4

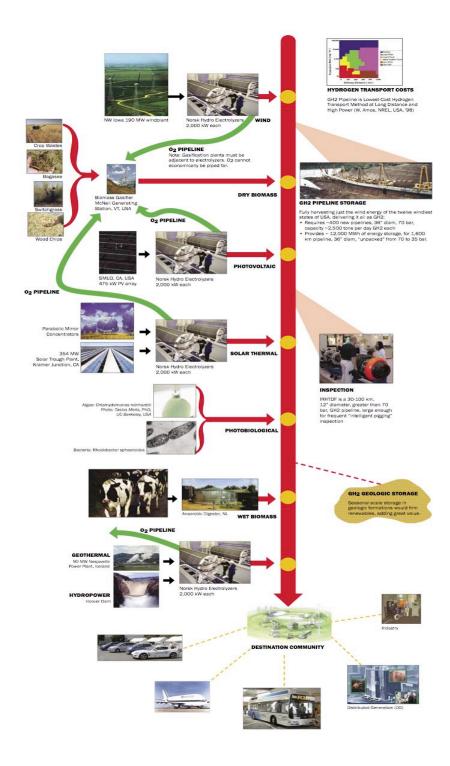

Conversion + transmission costs per kg H2


	No firming	Firmed
1: HVDC electricity	\$ 0.54	
2: GH2 pipeline	\$ 1.94	\$ 2.01
3: NH3 pipeline, deliver NH3	\$ 2.57	\$ 2.65
4: NH3 pipeline, deliver GH2	\$ 3.20	\$ 3.28

Conclusions

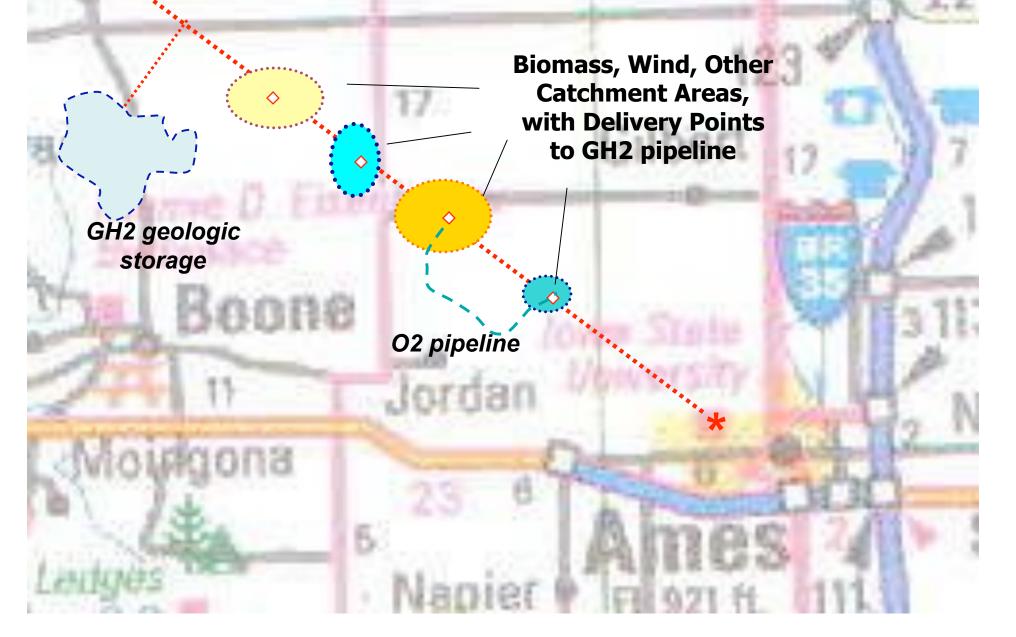
- Electricity costs less; no storage
- CF problem: size NH3 synthesis for peak windplant output? What do with excess?
- NH3 firming storage tanks cost less capital than GH2 caverns, per unit energy: both good investments.

USDOE-EIA: Estimated 2050 energy use (H₂ fleet using wind electrolysis)

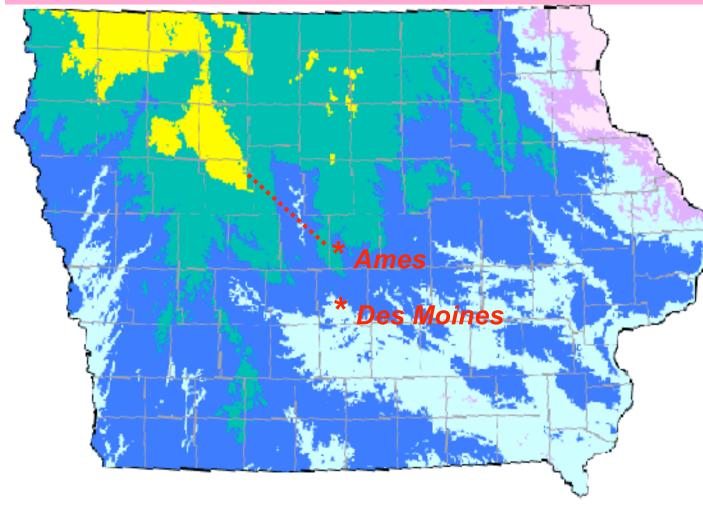


Pilot-scale Hydrogen Pipeline System: Renewables

Diverse


- Dispersed, diffuse
- Large-scale
- Stranded
 - Remote
 - No transmission

International Renewable Hydrogen Transmission Demonstration Facility (IRHTDF) Pilot plant


> Global opportunity: IPHE project

IRHTDF: generation, conversion, collection, storage corridor

IRHTDF

International Renewable Hydrogen Transmission Demonstration Facility

>19.0	>8.5
17.9-19.0	8.0-8.5
16.8-17.9	7.5-8.0
15.7-16.8	7.0-7.5
14.5-15.7	6.5-7.0
13.4-14.5	6.0-6.5
12.3-13.4	5.5-6.0
<12.3	<5.5

Iowa Energy Center

This map was generated from data collected by the Iowa Wind Energy Institute under Iowa Energy Center Grant No. 93-04-02. The map was created using a model developed by Brower & Company, Andover, MA.

Copyright © 1997, Iowa Energy Center. All rights reserved. This map may not be republished without the written consent of the Iowa Energy Center. Costs of Delivered Energy from Large-scale, Diverse, Stranded, Renewable Resources, Transmitted and Firmed as Electricity, Gaseous Hydrogen, and Ammonia

Ammonia: Key to US Energy Independence 9-10 Oct 06, Denver

> Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell

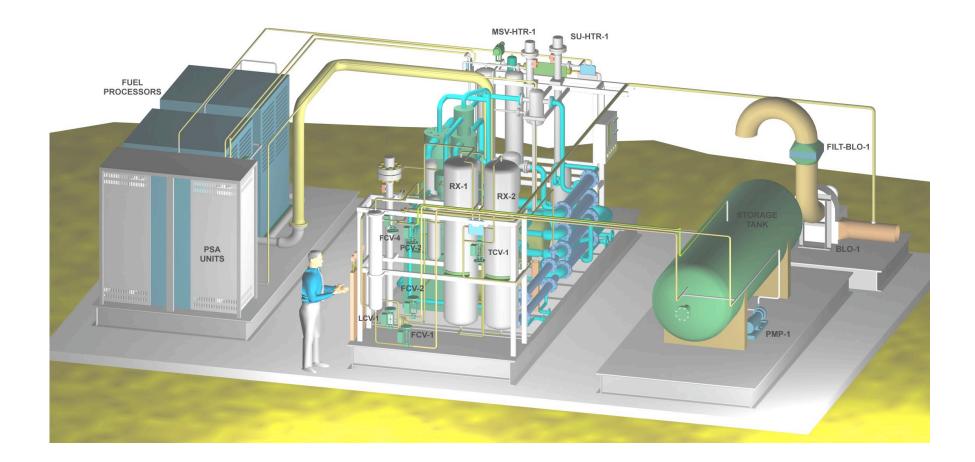
Solar Hydrogen Energy System

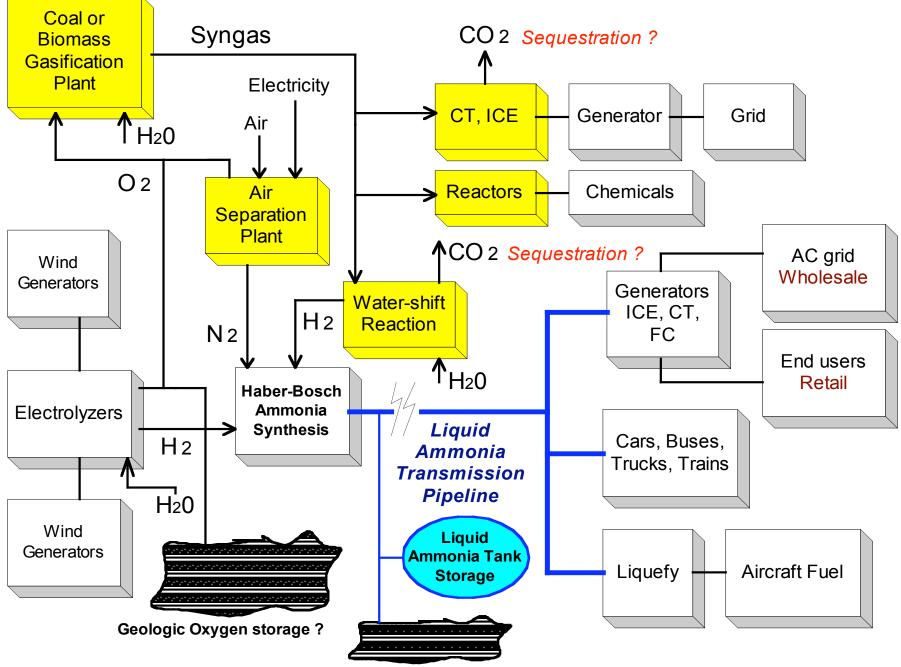
Hydrogen's principal value

- NOT fuel cell cars
- Gather, transmit, store:
 - Large-scale, diverse, stranded renewables
 - FIRM time-varying-output renewables
 - Pipeline transmission, storage
 - Geologic storage
- Benign, if from renewables
- Global opportunity
- Hydrogen "sector", not "economy"
 - Transportation fuel: ground, air
 - DG electricity, CHP, retail value

When we realize these as emergencies:

- Global Warming, Climate Change
- Energy Security and Cost
- Peak Oil and Natural Gas

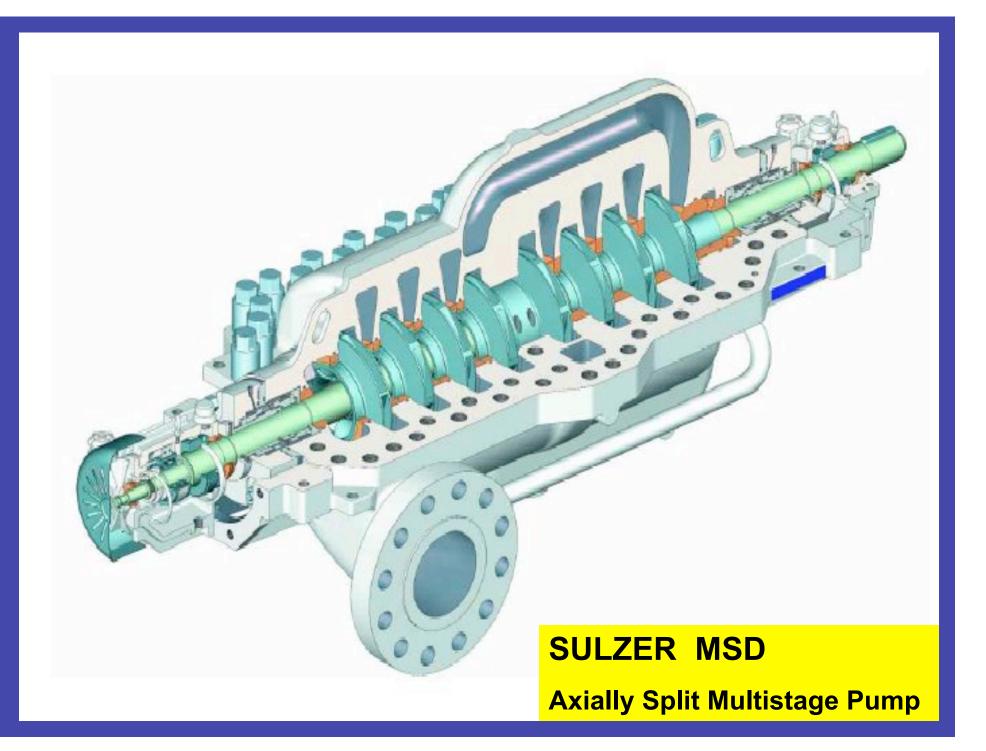

We must quickly invest in:

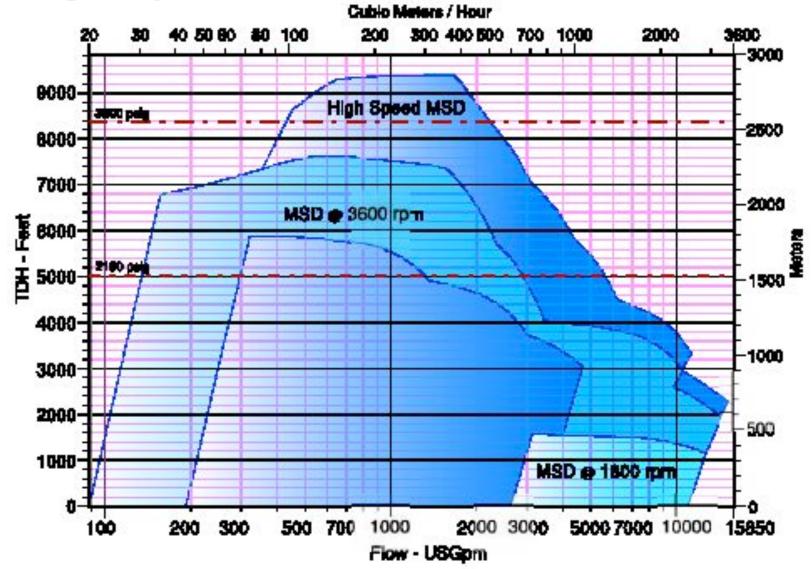

- Extant fleet
- Energy conservation, efficiency
- Large, new energy supplies:
 - CO₂-emissions-free
 - Indigenous
 - Both Distributed, Centralized

GW-scale Transmission Storage Options

- Electricity
 - Vanadium Redox battery (VRB Power Systems)
- Gaseous Hydrogen (GH2) pipeline
 - Pipeline
 - Geologic: salt caverns (man-made)
 - Geologic: natural formations
- Liquid Hydrogen (LH2)
 - Pipeline, truck, rail car, ship
- Ammonia (NH3) liquid
 - Tank, refrigerated, 10K 60K ton
 - Truck, rail car, ship
- Liquid synthetic HC's zero net C
 - Pipeline
 - Tank, truck, rail car, ship
 - Geologic: salt caverns (man made)
- "Energy Pipeline", EPRI: LH2 in pipeline
- Chemicals
 - Hydrides
 - Al Ga $\leftarrow \rightarrow$ Alumina

3 tpd Mini-NH3 Plant




Geologic Ammonia Storage ?

Smith Positive Displacement liquid meters, by FMC Energy Systems. Integrated Systems. Up to 16".

60Hz Range Map

Sulzer Pump Hydraulic Range Map

NH3 Properties

- Density = 682 kg / m^3 = 1,500 lbs / m^3 = 5.68 lbs / gal
- 264 US gallons / m^3
- 18 % Hydrogen by weight
- Energy density ~ 1.5 LH2 (liquid hydrogen)
- Liquid at 70F for at > 8 bar (120 psi)
- Liquid/gas equivalent (1.013 bar and 15 °C (59 °F)) : 947 vol/vol
- Boiling point (1.013 bar) : -33.5 °C
- Latent heat of vaporization (1.013 bar at boiling point) : 1371.2 kJ/kg
- Vapor pressure (at 21 °C or 70 °F) : 8.88 bar
- Viscosity: at 70F viscosity is ~0.13 centipoise (about 1/10 of water)

Electricity: energy transmission and storage

• Advantages

• Disadvantages

Hydrogen: energy transmission and storage

• Advantages

• Disadvantages

Ammonia: energy transmission and storage

• Advantages

• Disadvantages

Topology options

- SYSTEM: Gathering, transmission, storage, distribution
- Gathering:
 - generators, producers
 - nodes on transmission line
- Transmission:
 - security: overhead, underground
 - inherent storage
- Storage:
 - distributed, centralized
 - centralized: remote from end user; at sources
 - pipelines, geological, tanks
- Distribution:
 - safety
 - ubiquitous, as electricity and natural gas?

Topology options

• Large NH3 storage at sources

NH3 liquid pipeline pumps - A

- Assume: 10" line, 1,000 psi, 150 tons per hour
- Design: Recip or radial multistage split
- 3,600 rpm typical
- Estimated \$500K / pump package: elec motor drive, skid
- Paired in pump stations
 - Split flow
 - Redundant: service one, other assumes full load
 - Doubles pump cost: ~ \$1M per station
- NH3-fueled ICE: more costly
 - Speed increaser gear
 - ICE, gear cooling
- USA suppliers:
 - Textron: Union Pump
 - Flowserve
 - Sulzer: radial split only not good for NH3

NH3 liquid pipeline pumps - B

- Proper liquid pipeline design requires assuming:
 - diameter; capacity (tons per hour)
 - inlet and delivery pressures
 - inlet temp
 - NH3 viscosity and density as f (temp)
 - ground temp (seasonal; worst cases)
 - elevation profile over length: pumping power = f (elev increase)
- Required pumping estimate: 500 mi, 10", 400 hp pump, 250 psi delivery:
 - Inlet pump only: 75 tph
 Total: 1 pump
 - Inlet + I midline: 112 tph
 2 pumps
 - Inlet + 2 midline: >150 tph
- Required pumping estimate: 1,000 mi, 10", 400 hp pump, 250 psi delivery:
 - Inlet + 4 midline: >150 tph

5 pumps

3 pumps

500 mile, 10", NH3 transmission pipeline estimated capital costs

	<u> </u>	
Pipeline only, X42 steel, including engrg + ROW		
– @ \$ 175 / ft avg		460
3 pump stations:		
– 2 pumps @400 hp each @ \$500 K	1	
 Building + infrastructure 	<u>_1</u>	
TOTAL pump stations		6
 Valves, meters, input / output nodes \$ 10 		
Ý . Ø		
TOTAL		476

Capacity: 150 US tons / hour = 1.3 million tons / year

\$ million

1,000 mile, 10", NH3 transmission pipeline estimated capital costs

	<u> </u>	lon
 Pipeline only, X42 steel, including engrg + ROW 		
– @ \$ 175 / ft avg		920
5 pump stations:		
– 2 pumps @400 hp each @ \$ 500 K	1	
 Building + infrastructure 	<u> 1 </u>	
TOTAL pump stations		10
 Valves, meters, input / output nodes 		
		20
TOTAL		950

Capacity: 150 US tons / hour = 1.3 million tons / year

NH3 synthesis plant estimated capital costs

<u>\$ million</u>

TOTAL Capacity: 150 US tons / hour = 1.3 million tons / year

NH3 cracker plant estimated capital costs

<u>\$ million</u>

TOTAL Capacity: 150 US tons / hour = 1.3 million tons / year

Case 1: deliver renewables-source electricity as NH3 to city gate via 10" pipeline

<u>\$ million</u>

CAPITAL COSTS

- Electrolyzers
- NH3 synthesis plant, 150 tph = 3,600 tpd = 1.3 M tpy
- Pipeline system, complete TOTAL

ANNUAL COSTS

- Capital @ 15% CRF
- Conversion losses, 80% efficient * electrolyzers
- Conversion losses, 80% efficient * NH3 plant
- Pumping energy
- Other O&M TOTAL

* large electrolyzers and plants may be 85% efficient

Total Installed Capital Cost 1,000 mile GH2 pipeline, \$US million

Windplant size	1,000 MW	2,000 MW
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Pipeline, 20"	<u>930</u>	<u> 930</u>
TOTAL	\$ 2,430	\$ 3,930

Total Installed Capital Cost 1,000 mile GH2 Pipeline "Firming" GH2 cavern storage

Windplant size	1,000 MW	2,000 MW
	[million]	[million]
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Pipeline	930	930
# storage caverns	[4]	[8]
Caverns @ \$5M ea	20	40
Cushion gas @ \$5M e	ea <u>20</u>	40
TOTAL	\$ 2,470	\$ 4,010

Cavern storage: 1.6% total capital cost

"Firming" GH2 Cavern Storage for ALL Great Plains Wind

~ 12,000 caverns Excavate: \$5 M each \$60 B Cushion gas: \$5 M each \$60 B

Total

\$120 B

Adds VALUE: strategic, market

500 mile, 10", NH3 Pipeline Costs

- Capital (including "easy" design, ROW)
 - Pipeline
 - Pumps
 - Valves, meters, nodes (input, output)
 - TOTAL
- O+M
 - Energy conversion (to, from NH3)
 - Pumping
 - Maintenance
 - Insurance
 - TOTAL

500 mile, 3 GW, HVDC electric line

- Capital (including design, "easy" ROW)
 - ROW
 - Converter stations (pair)
 - Line
 - TOTAL
- O+M
 - Energy conversion (to, from NH3)
 - Pumping
 - Maintenance
 - Insurance
 - TOTAL

500 mile, 20" diam, GH2 pipeline

- Capital (including design, "easy" ROW)
 - ROW
 - TOTAL
- O+M
 - Maintenance
 - Insurance
 - TOTAL

Total Installed Capital Cost 1,000 mile NH3 pipeline, \$US million

Windplant size	1,000 MW	2,000 MW
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Pipeline, ??	<u>??</u>	??
TOTAL	\$?\$; ?

Total Installed Capital Cost 1,000 mile NH3 Pipeline "Firming" NH3 Tank Storage

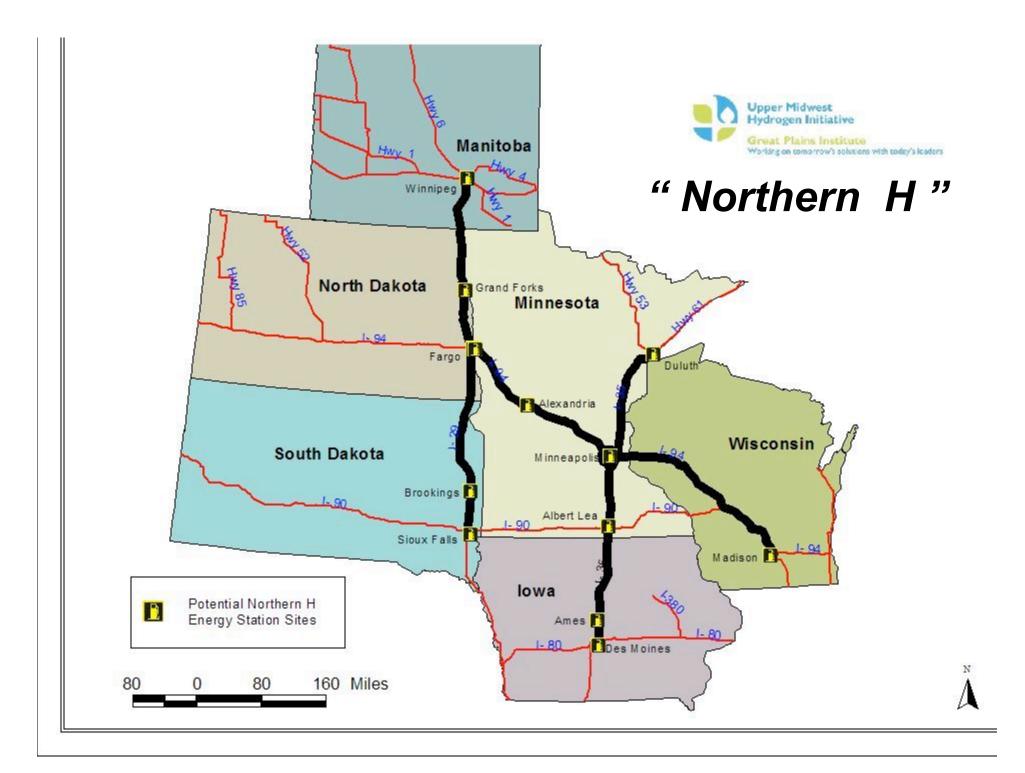
Windplant size	1,000 MV	V 2,000 MW
	[million] [million]
Wind generators	\$ 1,000	\$ 2,000
Electrolyzers	500	1,000
Pipeline	930	930
# storage tanks	?	?
Tanks @?ea	?	?
TOTAL	\$?	\$?


Tank storage: ? % total capital cost

"Firming" NH3 Tank Storage for ALL Great Plains Wind

~ ?? Tanks
Construction: \$? M each \$? B
Annual O&M: \$? M each \$? B

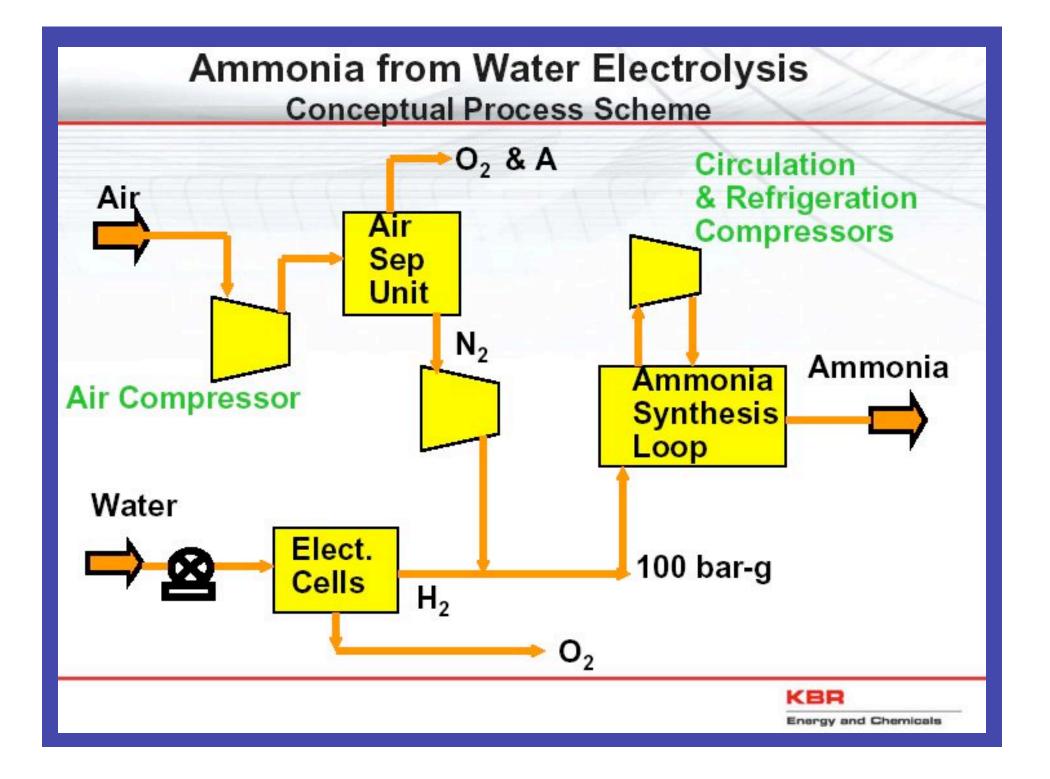
Total \$? B

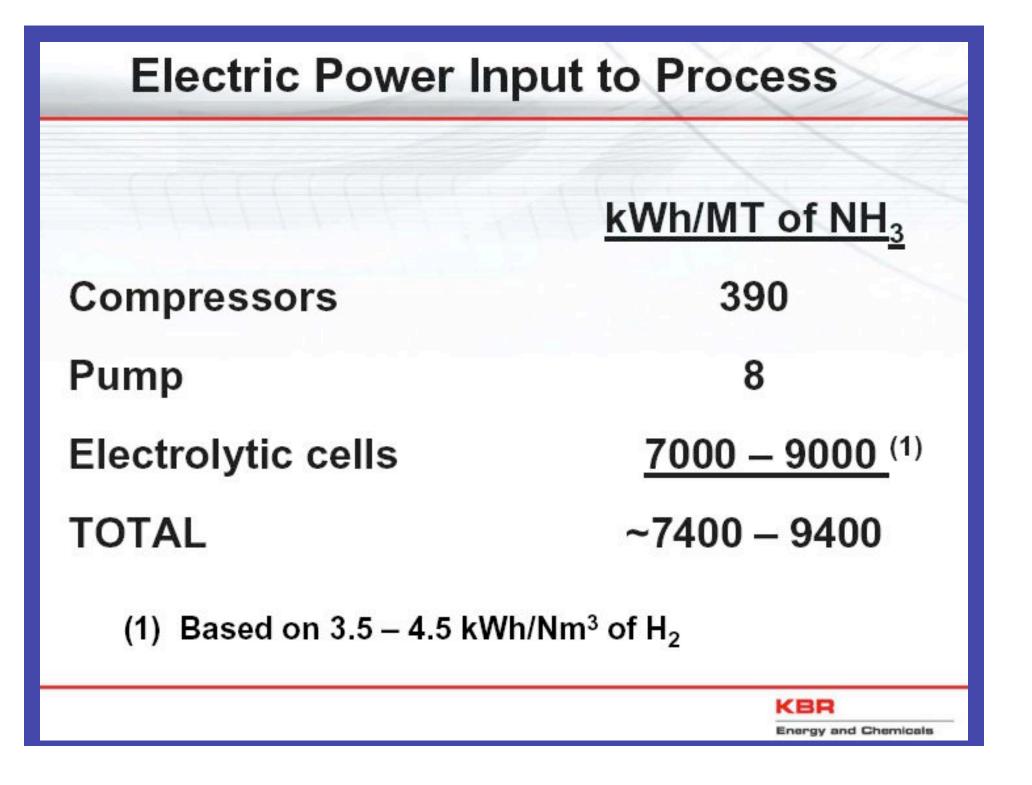

Adds VALUE: strategic, market

250 hydrogen "gas stations"

Of 10,000 CA total

Whence the hydrogen ?


"Efficiency" and Cost of NH3 Synthesis


From CH4 (natural gas) by SMR (steam methane reforming)

- From renewable-source H2
- Industry A: "90 % of cost of NH3 is natural gas"
- Industry B:
 - "SMR is 60% of capital cost of NH3 plant"
 - "But, must add N2 source: air separation plant"
- Industry C:
 - "140 mmscfd SMR plant cost \$210M for 2,000 tpd NH3 plant"
- Industry D: "NH3 plants are 80 85% efficient"
- So: NH3 energy costs 1.15 times H2 energy

Renewable-source Hydrogen Eliminates:

- Natural gas feed purification section
- SMR
- Secondary reformer (water-shift) (high + low temp)
- CO2 removal system
- Methanator + dryers
- Cryogenic purification
- All associated heat exchangers for the above

Approx. Energy Consumption (Cont'd)

	Gcal/Met	ric Ton NH ₃
	860 kcal/kWh	2150 kcal/kWh ⁽²⁾
Electricity (1)	6.4	16.0
Heat recovery	-0.6	-0.6
TOTAL	5.8	15.4

- (1) Based on 3.5 kWh/Nm³ of H₂
- (2) Conversion of primary energy to electricity at 40% efficiency.

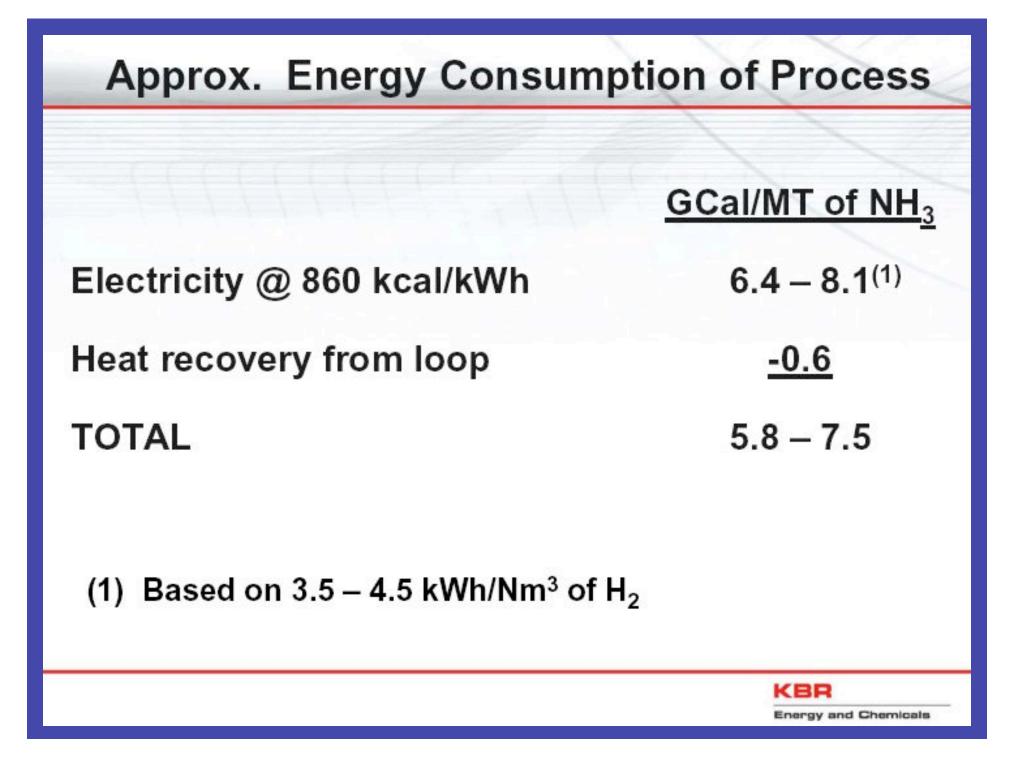
Energy and Chemicals

Approx. Variable Operating Cost

 Electricity @ \$0.035/kWh
 \$259 (1)

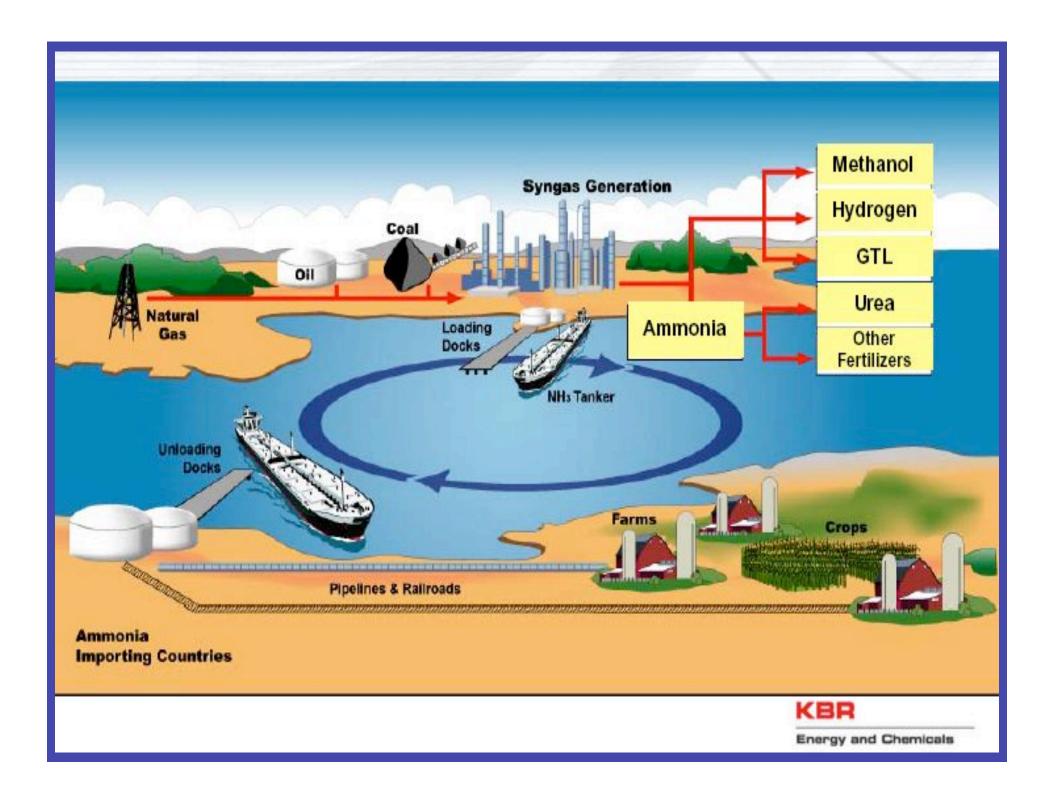
 Water @ \$5/1000 gallons
 2

 By-product O₂ @ \$25/t
 -42

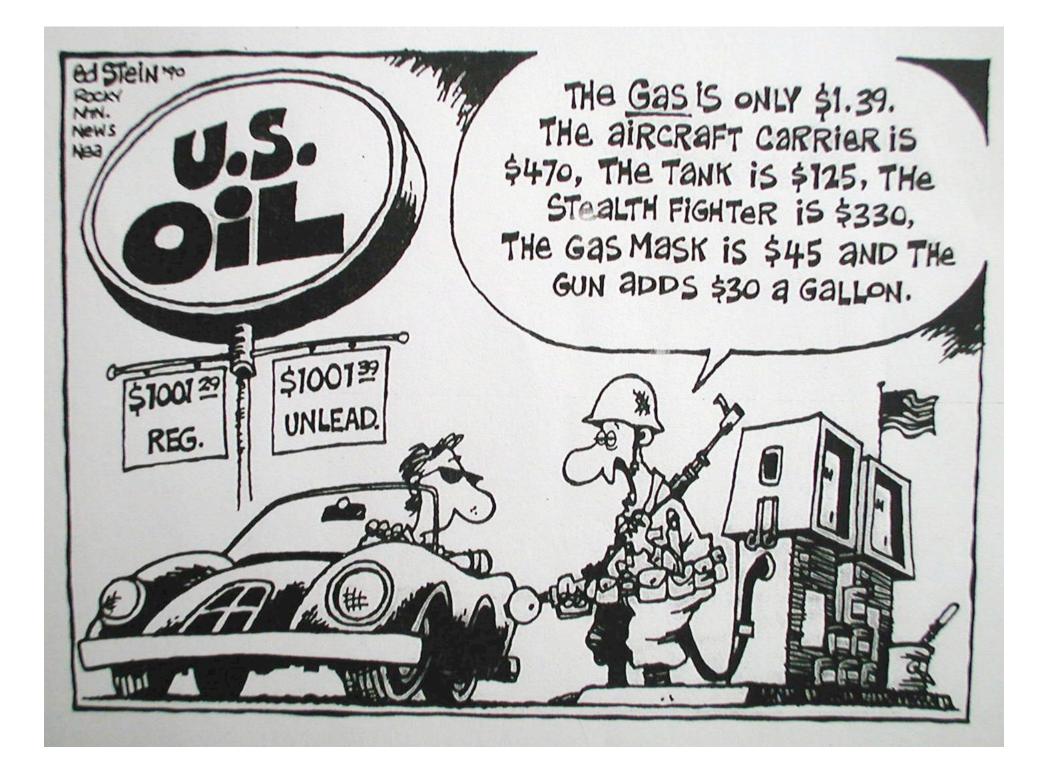

 Heat recovery @ \$40/Gcal
 -24

 TOTAL
 \$195

 (1) Based on 3.5 kWh/Nm³ of H₂

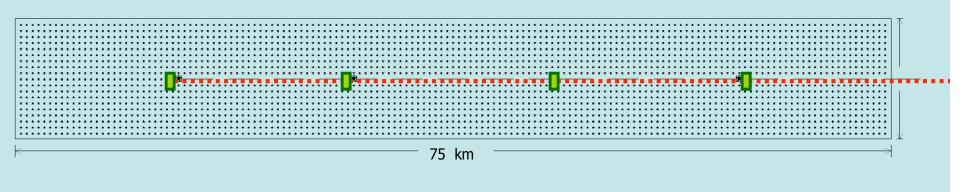


\$/MT of NH₃



NH3 Dissociators / Crackers

Manufacturer	H2 Output kg/Day	Electric Power Consumpt. kW	Efficiency %	Weight kg	Footprint cm X cm	Cost \$K
Lindberg	273	140	63	5800	290 X 240	155
CI Hayes	228	140	55	2180	180 X 170	N/A
CI Hayes	136	64	66	2180	180 X 170	70
Koyo Thermo	96	59.5	55	N/A	280 X 100	N/A
Borel	11.2	7.5	51	N/A	85 X 56	N/A


"Distributed Collection" 4,000 MW of Nameplate Wind Generation 150 x 19 grid 500 m spacing

2,850 wind generators at 1,400 kW each

~ 750 sq km

~ 300 sq mi

10 km

ITEM 130 LOCAL RATES - In Dollars per Ton

 Increase. 	All Local Rates	On T	This Page	Are	Increased.
-------------------------------	-----------------	------	-----------	-----	------------

то	FROM						
	Enid	Borger Agrium	Verdigris	Blair	Mocane Trk Uni	Port Neal	
Farnsworth	28.21	26.66	28.92	29.14	26.66	29.42	
Borger Agrium	28.53		29.24	29.46	26.97	29.75	
Conway Koch	27.18	28.01	27.88	27.80	27.20	28.07	
Beatrice Agrium	28.10	28.92	28.81	26.97	28.01	27.28	
Early	29.14	29.98	29.85	27.00	29.36	26.84	
Garner Agrium	29.69	30.52	30.41	27.54	29.89	27.38	
Blair	28.64	29.46	29.35		28.84	26.74	
Port Neal	28.91	29.75	29.62	26.74	29.11		
Sargeant Bluff	28.89	29.74	29.61	26.73	29.11	26.37	
Garner Koch	29.69	30.52	30.41	27.54	29.89	27.38	
Mankato Koch	30.15	30.99	30.84	27.98	30.32	27.84	
Garner CF	29.69	30.52	30.41	27.49	29.89	27.38	
Clay Center A Terminal	27.66	28.52	28.39	27.31	27.88	27.57	
Greenwood A Terminal	28.31	29.14	29.01	26.68	28.50	26.95	
Whiting A Terminal	28.81	29.62	29.52	26.65	29.00	26.50	
Mankato A Terminal	30.15	30.99	30.84	27.95	30.32	27.84	
Conway A Terminal	27.18	28.01	27.88	27.50	27.38	28.07	
Mocane A Terminal	27.91	26.97	28.62	28.65		29.11	

Magellan Tariff NH3 Pipeline

Holbrook notes: 23 Sep 06 - A

- Valero system ~ 2,000 miles of anhydrous ammonia pipeline in Midwest.
- Magellan/Enterprise owns/operates ~ 1,500 miles of anhydrous ammonia pipeline in central Midwest.
- May be shorter pipelines Australia and Mexico: single supply lines from production to storage facilities ?
- Diameter: USA 6" 10" transmission plus 4" 6" laterals.
- Almost entirely underground.
- Typically X-42 or Grade B steel. Rated yield (SMYS) = 35,000 42,000 psi. Welded.
- Diameter / Wall: 10" / 0.250", 8" / 0.203", 6" / 0.188", 4" / 0.188"
- Valero LP line operates 1,340 1,420 psi Liquid NH3 is at ambient ground temperature at elevated pressures.
- Valero transmission line > 150 tons per hour (tph)
- Transmission pipeline needs intermediate pipeline pump stations.
- Transmission line continuous flow supplies industrial accounts and builds the terminal inventories in the Midwest for the short burst agricultural application seasons.
- Seasonal spikes of flow during the agricultural fertilizer seasons of spring, summer side-dress, and fall.
- Frequency of leaks, releases, failures, or shut-downs: rare, brief
- Leak detection: pipeline control centers use line balance methods and proven meters
- Lines are patrolled by air > 26 times per year
- Corrosion: Anhydrous ammonia is waterless, so a perfect preservative of carbon steel.
- External pipe coating defects are only potential corrosion areas.
- Cathodic protection and pipeline coating materials are used.
- In-line inspection tools are now being used.
- Construction cost estimate: \$250,000 for a best case scenario, for a smaller diameter line.
- Production energy cost / ton, "modern Haber-Bosch" = ~40 GJ / ton
- The Magellan line is about 1000 miles and is still the 6-10 inch carbon steel type. Operates at ~800-900 psi and 400-500 barrels per hour (42 gals/barrel, density 0.68 kg/liter) I believe it has pumps about every 50 miles. Bill: 40-60 tph, less than Valero
- Not all ammonia is applied as anhydrous (only about 4-5 MMT out of 12-15 MMT total, the rest urea, and ammonium salts) and not all is delivered by pipeline. Much by train and truck.

Holbrook notes: 23 Sep 06 - B

- DOE: hydrogen fueling station can provide 1500 kg per day pressurized hydrogen gas to fuel-cell powered cars. 1500 kg of hydrogen = 8500 kg = 3,750 gallons anhydrous ammonia per day, not including the excess energy needed to power the reforming reaction. The volume of this amount of ammonia is quite small, and several day's supply can be stored at the fueling station in a standard 30,000 gallon ammonia tank, which is a low-cost nominal size routinely used at ammonia fueling stations in the United States.
- Annual world NH3 = 100 million tons (includes urea and ammonium salts); 14-15 million tons in USA (Only 4-5 of that is anhydrous). So, Valero + Magellan pipelines @ full capacity = 2.4 / (4 to 5) million tons / yr =~ 50%
- David Bloomfield, 2 Oct: The efficiency of modern ammonia synthesis plants is probably around 80% Check with (KBR). The biggest loss is compression.

Holbrook notes: 23 Sep 06 - C

- \$30K / year total O&M, including refrig, for 60K ton storage tank (CF Industries) (what CF; average tank contents?)
- The current price for a 2,000 mtd gas-based ammonia export plant is about \$500 million. This price includes everything: EPC price, IDC, financing, jetty, water supply and assumes a stand-alone greenfield site. A (coal) gasification-based plant costs much more depending on the feedstock. However, some (coal) gasification retrofits seem likely to happen in the next few years. Keith Stokes
- Holbrook, on above: A "renewables" ammonia plant will probably cost less because it gets its hydrogen from electrolysis and doesn't need an NG reforming component. I'd guess 25% savings. Also, for plant size scaling, Keith says he always uses a 0.65 power law.

Other notes: 30 Sep 06 - A

At 02:12 PM 4/26/2006, Schainker, Robert wrote: rschaink@epri.com Bill:

I assume your GH2 transmission pipeline paper was well received at the Las Vegas conference in early April. Below are some of my thoughts which address the questions/topics you raised in your email and paper.

- 1. Yes, you can store GH2 in "bedded" salt. The issue is the depth of the bedded salt formation and the depth of the cavern within the bedded salt formation, since the pressure you store the GH2 at should be about the same pressure as the hydrostatic head of pressure at the depth the cavern is located in, within the bedded salt formation. This will insure the salt cavern does not slowly creep inward or outward from its original position when it was solution mined over its lifetime of yearly cycling. Also, the temperature of the injected GH2 should not be greater than about 20C higher than the existing temperature of the walls of the cavern, which depends on the depth of the cavern. The people at ChevronPhilips Clemens Terminal GH2 storage cavern operation should be able to give you ample information on this topic, since they have valuable experience in this area.
- 2. I do think the GH2 pipeline system will need some recompression stations since the friction in a long pipeline will indeed be large enough to require recompression along the pipeline. The exact number of recompression stations depends, of course, on the pipeline throughput rate, pipe diameter and GH2 temperature. I suggest you get in contact with the Netherlanders on this topic since they have the longest H2 pipeline in the world right now, and they have been operating it for many years successfully.
- 3. The Netherlanders should also know more than anyone else regarding corrosion/embitterment.
- 4. Regarding the EPRI SuperGrid project which incorporates a H2 pipeline cooling a superconductor, yes, this project is still being funded, albeit at a low level. Currently, a scoping study is being performed and one of my energy storage colleagues, Steve Eckroad, is managing it.
- Dr. Robert B. Schainker, Strategic Planning, EPRI Office of Innovation 650-855-2549, -996-6186, -855-8997

Other notes: 30 Sep 06 - B

• Gary Koeppel, Praxair: In a wide open area, to design, engineer, buy materials, excavate, construct, test and clean, obtain ROWs, permits for a 10 inch pipe would cost \$150-\$175 per foot. In congested urban areas or environmentally sensitive areas, or areas with questionable ROW costs, the cost could go to \$250-\$350 per foot. Horizontal Directional Drills used to go under waterways or congested areas are costing about \$400/ft.

