Ammonia Fuel Production with Firming Storage from Diverse, Stranded, Renewable Energy Resources

Sixth Annual Ammonia Fuel Conference 13 October, Kansas City

ATLANTIC OCEA

Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell

Earth's only source of income: Solar radiation, lunar tides

- Climate Change
- Demand growth
- Depletion of Oil and Gas
- Only 200 years of Coal left
- Only Source of Income:
 - Sunshine
 - Tides
 - Meteors and dust
 - Spend our capital ?

- Emergencies:
 - Climate change
 - Energy prices
 - Energy security
- Conservation + efficiency
- GW scale renewables
- Beyond Electricity Grid
- Energy: beyond electricity
- Hydrogen, ammonia, ?

- Global
- Indigenous
- Firm: available
- C-free
- Benign
- Abundant
- Affordable
- Equitable
- Perpetual:
 - solar
 - geothermal
 - tidal

*yearly potential is shown for the renewable energies. Total reserves are shown for the fossil and nuclear "use-them, lose-them" resources. Word energy use is annual.

 "Americans can be counted on to always do the right thing –
but only after they have tried everything else "

Winston Churchill

The dog caught the car. Dan Reicher

" *There's a better way to do it... Find it "*

Pickens Plan

- Bold, large-scale, motivates thinking
- Rally public: "Army"
- Disappoint ? Disillusion ?
- GW scale: economies
- Underestimates
 - Transmission
 - Grid integration, thermal plant abuse
 - Firming storage needed
- Disregards Hydrogen demand
 - Gulf Coast refineries
 - Transport fuel
- Out of gas ?

Benefit / Cost Perspective

- Analytical framework: Not all answers
- Long-term
- Benefits
- Costs
- Systems thinking → tech, econ analysis

Solar Hydrogen Energy System

Hydrogen Fuel Cell Proton Exchange Membrane (PEM) type Hydrogen (H2) combines with Oxygen (O2) to make

electricity + heat + water (H2O)

"Ammonia Nation ?" Anhydrous ammonia (NH3)

- Low-cost transmission, storage: liquid
- Transportation fuel
- Stationary generation, CHP
- Total USA annual energy '02 06
 - 100 quads
 - 10,000 TWh
- More renewables than coal
- Coal limits:
 - Only 200 year supply ?
 - CCS limits: where to put the CO2 ?

Valero LP Operations

Why Ammonia ?

Only liquid fuel embracing:

- Potentially all RE-source
- Cost competitive with HC fuels
- Carbon-free
- Energy cycle inherently pollution free
- Reasonably high energy density
- Practical to handle, store, and transport
- End-use in ICE, CT, fuel cell
- Self-odorizing safety
- "The other hydrogen"

Ammonia (NH₃) Synthesis Plant Natural Gas Feed

1 – 3,000 tpd

Haber-Bosch "Synloop"

Inside the Black Box: Steam Reforming + Haber-Bosch

Energy consumption ~33 MBtu (9500 kWh) per ton NH₃

Exporting From 12 Windiest Great Plains States

Number of GH2 pipelines or HVDC electric lines necessary to export total wind resource Wind energy source: PNL-7789, 1991 * at 500 miles average length

State	AEP, TWh	Wind Gen MW (nameplate) (40% CF)	6 GW 36″ GH2 export pipelines	\$ Billion Total Capital Cost *	3 GW export HVDC lines	\$ Billion Total Capital Cost *
North Dakota	1,210	345,320	50	50	100	60
Texas	1,190	339,612	48	48	100	60
Kansas	1,070	305,365	43	43	100	60
South Dakota	1,030	293,950	41	41	100	60
Montana	1,020	291,096	41	41	90	54
Nebraska	868	247,717	35	35	80	48
Wyoming	747	213,185	30	30	70	42
Oklahoma	725	206,906	29	29	60	36
Minnesota	657	187,500	26	26	60	36
lowa	551	157,249	22	22	50	30
Colorado	481	137,272	19	19	40	24
New Mexico	435	124,144	17	17	40	24
TOTALS	9,984	2,849,316	401	\$ 401	890	\$ 534

Trouble with Renewables

- Diffuse, dispersed: gathering cost
- Richest are remote: "stranded"
- Time-varying output:
 - "intermittent"
 - "firming" storage required
- Transmission:
 - low capacity factor (CF) or curtailment
 - NIMBY
- Distributed or centralized ?

Trouble with Renewables -Electricity Transmission

- Grid nearly full
 - New wind must pay for transmission
 - Costly: AC or DC
- NIMBY
- Low capacity factor or curtailment
- No storage: smoothing or firming
- Overhead towers vulnerable: God or man
- Underground: Only HVDC

Wind seasonality, Great Plains

- Winter = 1.20
- Spring = 1.17
- Summer = 0.69
- Autumn = 0.93

Source: D. Elliott, et al, NREL

Wind Seasonality, Northern Great Plains

Normalized to 1.0 per season

Wind Seasonality, Northern Great Plains 1,000 MW windplant: AEP = 3,500 GWh / yr "Firm" goal = 875 GWh / season Storage: 320 GWh per 1,000 MW wind

Annual – scale "Firming" Great Plains Wind

- Potential, 12 states, ~50% land area:
 - 10,000 TWh = 100 quads = entire USA energy
 - 2,800,000 MW nameplate
- Seasonality:
 - Summer minimum
 - Spring Summer maximum storage
 - "Firming" energy storage, per 1,000 MW wind:
 - As electricity = 320 GWh
 - As GH2 = 15,712 tons, metric @ 2,500 tons / cavern = 6 caverns
 - As NH3 = 87,291 tons, metric @ 60,000 tons / tank = 1.4 tanks
 - "Firming" energy storage, all great Plains wind:
 - As GH2 = 17,000 caverns @ \$15M each = \$264 billion
 - As NH3 = 5,000 tanks @ \$25M each = \$127 billion

"Firm" energy worth more

- Every hour, every year
- Strategic: indigenous, secure, essential
- Dispatchable
- Market price
- Bankable large projects
- Risk avoidance: rapid climate change
- RE C-taxes acceptable

320,000 MWh storage Annual firming 1,000 MW wind

- Electricity
 - VRB (Vanadium Redox Battery)
 - O&M: 80% efficiency round-trip
 - Capital: \$500 / kWh = \$160 Billion
 - CAES (Compressed Air Energy Storage)
 - O&M: \$46 / MWh typical
 - Iowa Stored Energy Park:
 - **Power = 268 MW**
 - Energy capacity = 5,360 MWh
 - Capital: 268 MW @ \$ 1,450 / kW = \$ 390 M @\$ 30 / kWh = \$ 10 Billion
- GH2 (3 hydrogen caverns) Capital \$70 Million
- NH3 (2 ammonia tanks) Capital \$30 Million

\$70 Million \$30 Million 32

Focus: Energy Storage Alternatives

-Gaseous Hydrogen (GH2)

- Pipelines
- Caverns
- End-users
- "Hydricity"
- Ammonia (NH3), liquid in tanks
 - Small, 150 psi
 - Large, "atmospheric", refrigerated
 - "Energy Islands": Alaska villages
- Electricity

Energy Storage System Characteristics

- Storage capacity (Mwh, scf, nM3, Mt, gallons)
- Power (MW, scfm) In / out rate
- Costs
 - Capital
 - O&M
- Efficiency
- Response time
- Durability (cycling capacity)
- Reliability
- Autonomy
- Self-discharge
- Depth of discharge
- Adaptation to the generating source
- Mass and volume densities of energy
- Monitoring and control equipment
- Operational constraints
- Feasibility
- Environmental

Energy Storage System Characteristics --Ammonia off the charts ?

- Storage capacity (Mwh, scf, nM3, Mt, gallons)
- Power (MW, scfm) In / out rate
- Costs
 - Capital
 - **O&M**
- Efficiency
- Response time
- Durability (cycling capacity)
- Reliability
- Autonomy
- Self-discharge
- Depth of discharge
- Adaptation to the generating source
- Mass and volume densities of energy
- Monitoring and control equipment
- Operational constraints
- Feasibility
- Environmental

Inside the Black Box: HB Plus Electrolysis

2,000 MW (nameplate) Great Plains Windplant Output

Energy production at windplant 40 % Capacity Factor:

As electricity:

19,200 MWh / day 7,000,000 MWh / year

	tons/hr	tons/day	tons/yr
As H2 @ 80% electrolysis efficiency	16	390	142,350
As NH3 @ 70% conversion efficiency	97	2,321	847,321
10" NH3 pipeline capacity as H2	11	264	96,360
10" NH3 pipeline capacity as NH3	60	1,440	525,600

Case 4a: Capital costs, no firming 2,000 MW Great Plains windplant Elec → GH2 → NH3 → Liquid Pipeline → "Terminal" or "City gate"

Capital costs:

—	Wind generators, 1.5 MW @ \$1,500 / kW	\$ 3,000 M
—	Electrolyzers, 450 psi out @ \$350 / kWe	\$ 700 M
-	Electrolyzer power electronics saving	\$ 0 M
—	H2 compressors	\$ 10 M
_	NH3 synthesis plants (2), with ASU	\$ 750 M
_	Pipeline: 1,000 miles	\$ 800 M
_	Pipeline pumping	\$ 8 M
-	Pipeline infrastructure	\$ 2 M
Tot	tal, without firming storage	\$ 5,270 M

Case 4a: Annual costs, no firming

Elec \rightarrow GH2 \rightarrow NH3 \rightarrow Liquid Pipeline \rightarrow "Terminal" or "City gate"

Production capital costs @ 15% CRF @ \$ 5,270 M \$ 790 M

Conversion and transmission losses Electrolyzer conversion loss @ 20% AEP 2 80 M \$ **Compression energy** \$ 1 M \$ NH3 synthesis plant, with ASU 80 M \$ **Pipeline pumping energy** 2 M \$ **1** M

Pipeline misc O&M

Total annual costs

\$ 954 M

Total cost per mt NH3 = \$ 1,126 Total cost per kg NH3 = \$ 1.13

> ¹ Subsidies, value-adders: PTC, O₂ sales, REC ² Annual Energy Production @ \$US 0.057 / kWh

Case 4b: Capital costs, Firming storage tanks 2,000 MW Great Plains windplant

Elec \rightarrow GH2 \rightarrow NH3 \rightarrow Liquid Pipeline \rightarrow Firming tanks \rightarrow "Terminal" or "City gate"

Capital costs

– Wind generators, 1.5 MW @ \$1,500 / kW	\$ 3,000 M
 Electrolyzers, 450 psi out @ \$350 / kWe 	\$ 700 M
 Electrolyzer power electronics saving 	\$ 0 M
 H2 compressors 	\$ 10 M
 NH3 synthesis plant, with ASU 	\$ 750 M
 Pipeline: 1,000 miles 	\$ 800 M
 Pipeline pumping 	\$ 8 M
 Pipeline infrastructure 	\$ 2 M
– Tanks: 4 tanks @ \$ 25 M	\$ 100 M
Total, with firming storage	\$ 5,370 M

Incremental capital cost of NH3 tanks = 100 / 5,370 = -0.2 %

Case 4b: Annual costs, Firming storage tanks 2,000 MW Great Plains windplant Elec → GH2 → NH3 → Liquid Pipeline + tanks → City gate

•	С	apital costs @ 15% CRF @ \$ 5,370	\$	805 M
•	С	onversion and transmission losses		
	_	Electrolyzer conversion loss @ 20% AEP	\$	80 M
	_	Compression	\$	1 M
	_	NH3 synthesis plants (2), with ASU	\$	80 M
	_	Pipeline pumping energy	\$	2 M
	_	Pipeline misc O&M	\$	1 M
	-	Tank in / out	<u>\$</u>	<u>0 M</u>
		Total annual costs	\$ 9	969 M
		Total cost per Mt NH3 = \$ 1,144		

Inside the Black Box: Solid State Ammonia Synthesis

SSAS vs H-B NH3 Synthesis

(Solid State Ammonia Synthesis vs Haber – Bosch)

- H-B (Haber-Bosch)
 - \$1.5 M per MWe input
 - 2 tons / day output per MWe input
 - O&M cost / ton: ??
- SSAS (Solid State Ammonia Synthesis)
 - \$650 K per MWe input
 - 3.2 tons / day output per MWe input
 - O&M cost / ton: lower ?

Denali Commission EETG

Solid State Ammonia Synthesis (SSAS) Pilot Plant for Renewable Energy (RE) Firming Storage

> 28 Sept 09 Alaska Applied Sciences, Inc. Juneau, AK Bill Leighty, Principal

Rejected 30 Sept 09

- 200 "villages"
- 100+ with good RE
- Energy islands

EUTIAN

• Grid: only Railbelt

Q

Galena +

08

Baranof Islav

Denali Commission Summary

- R&D plus pilot plant: NHThree LLC
- Simulate Alaska community energy island
- SSAS offer RE-source internal energy independence?
 - Discover, demonstrate
 - Technical: conversions efficiency; byproduct heat used?
 - Economic: capital, O&M costs?
- Deploy at UAS Tech Center, Juneau
- Operate in two modes on AEL&P grid:
 - Hydroelectricity-to-NH3
 - NH3-to-AEL&P grid
- SCADA data collect, analyze
- Modify system hardware + software
- Relocate to smaller community?
- Final report; conference papers; wide distribution
- Implications for export of large-scale, stranded AK RE ?

Anhydrous Ammonia (NH3) wholesale price, NOLA (New Orleans, LA), 3 years

Ammonia ship at Burrup Peninsula Western Australia

Figure 1. Complete, containerized SSAS renewable energy conversion and storage system pilot plant 58

1,000 hours, ICE, 6 cyl, 100 hp 75% ammonia, 25% propane

Cost per Gallon: 250 psi vs "Atmospheric"

Liquid Ammonia Storage Tank

30,000 Tons \$15M turnkey

-33 C

Ammonia 534 kg H2 \$ 10,000

Hydrogen gas 350 kg H2 \$ 400,000

64

Energy Storage Alternatives

"Electricity"

- Batteries
 - Lead-acid
 - Nickel-cadmium
 - Lithium ion
 - Sodium sulfur
- Pumped hydro (PHS)
- Compressed air (CAES) (large ans small scale)
- Natural gas coupled (NGS)
- Flow batteries (FBES)
- Flywheel (FES)
- Superconducting magnetic (SMES)
- Supercapacitors

Energy Storage Alternatives

Other

- Natural gas
- Chemical
- Synthetic HC's
 - Fisher- Tropsch Liquids (FTL's)
 - Gas- To- Liquids (GTL's)
- Thermal energy (TES)
- NEW
 - Compressed hydrogen (35 70 bar typical) →
 ICE or fuel cell vehicles (FC-HES)
 - "Hydricity"
 - Gaseous Hydrogen (GH2) in caverns and pipelines
 - LH2: liquid hydrogen
 - Ammonia in tanks

Wind Potential ~= 3,000 GW

Carmakers Commit to Hydrogen Fuel Cell Cars ?

- 9 Sept 09 "Letter of Understanding"
- Carmakers:

Daimler	Ford
GM/Opel	Honda
Hyundai/Kia	Renault
Nissan	Toyota

- Serial production ~ 2015: "... quite significant number" of electric vehicles powered by fuel cells
- Vague; lobbying for fed FCV funds restore ?
- Will need H2 fuel: "... hydrogen infrastructure has to be built up with sufficient density ..."

Carmakers' letter Oct 09: FCV's production 2015, Need H₂ fuel !

Hydrogen Fuel Cell Hybrid Electric Vehicle: HFCHEV⁹

Personal Vehicle On-board Storage 300 mile range; estimated OEM cost per vehicle

ام ایر وار را ا

		Нургіа	
	Storage	drive train	Storage
	<u>cost</u>	<u>efficiency</u>	<u>capacity</u>
Gasoline, diesel	\$ 100	25 %	10 gal
Electricity: batteries	\$ 10,000	90 %	kWh
CNG	\$ 300	25 %	? scf
H2 (70 bar) ICEHV	\$ 4,000	35 %	5 kg
H2 (70 bar) FCHEV	\$ 3,000	60 %	3 kg
Ammonia (20 bar)	\$ 300	45 %	15 gal

Domal Salt Storage Caverns

Hydrogen vs Ammonia Storage: Large-scale, capital cost per MWh

GH2 salt cavern:	\$ 1	20 → 55
 – 150 bar, 200,000 m³ physical 		
– \$70 → \$30 per m ³ physical		
 Alton project 		
NH3 tank	\$	60
– 30,000 Mt		
 "Atmospheric" refrigerated 		
Diesel, large surface tanks	\$??

USDOE-EIA: Estimated 2050 energy use (H₂ fleet using wind electrolysis)

Pilot-scale Hydrogen Pipeline System: Renewables

• Diverse

- Dispersed, diffuse
- Large-scale
- Stranded
 - Remote
 - No transmission

International Renewable Hydrogen Transmission Demonstration Facility (IRHTDF) Pilot plant

> Global opportunity: IPHE project

320,000 MWh storage Annual firming, 1,000 MW wind

- Electricity
 - VRB (Vanadium Redox Battery)
 - O&M: 80% efficiency round-trip
 - Capital: \$500 / kWh = \$160 Billion
 - CAES (Compressed Air Energy Storage)
 - O&M: \$46 / MWh typical
 - Iowa Stored Energy Park:
 - **Power = 268 MW**
 - Energy capacity = 5,360 MWh
 - Capital: 268 MW @ \$ 1,450 / kW = \$ 390 M @\$ 30 / kWh = \$ 10 Billion
- GH2 (3 hydrogen caverns) Capital \$70 Million
- NH3 (2 ammonia tanks) Capital \$30 Million

) Million

 * Americans can be counted on to always do the right thing –
 but only after they have tried everything else "

Winston Churchill

The dog caught the car. Dan Reicher 79

Jon Wellinghof FERC* Chairman

About new coal + nuclear plants:

"We may not need any, ever"

NY Times, 22 Apr 09

* FERC = Federal Energy Regulatory Commission 80

*yearly potential is shown for the renewable energies. Total reserves are shown for the fossil and nuclear "use-them, lose-them" resources. Word energy use is annual.

Ammonia Fuel Production with Firming Storage from Diverse, Stranded, Renewable Energy Resources

DVD's, handouts, your card

Sixth Annual Ammonia Fuel Conference 13 October, Kansas City

ATLANTIC OCCA

Bill Leighty, Director The Leighty Foundation Juneau, AK wleighty@earthlink.net 907-586-1426 206-719-5554 cell END 13 Oct 09 Sixth Annual Ammonia Fuel Conference

Kansas City

Bill Leighty The Leighty Foundation

1: Adequate Renewables

- Run the world; humanity's <u>needs</u>
- "Distributed" and "Centralized"
- Affordable, benign
- Diverse, synergistic
- Richest are "stranded"
 - Far from markets
 - No transmission

2: When we realize these as emergencies:

- Global Warming, Rapid Climate Change
- Energy Security and Cost
- Peak Oil and Natural Gas

We must quickly invest in:

- Energy conservation, efficiency
- Large, new energy supplies:
 - CO₂ emissions free
 - Indigenous
 - Both distributed, centralized

3: Shortest path to benign, secure, abundant energy

- Renewables
 - Diverse
 - Diffuse
 - Dispersed
- Centralized:
 - Large, rich; lower cost than distributed ?
 - But stranded (no transmission)
- Ammonia and Gaseous hydrogen (GH2) pipelines
 - Conversion, gathering
 - Transmission
 - Storage: tanks, salt caverns
 - Distribution
- Affordable annual-scale firming:
 - Ammonia: surface tanks
 - GH2: salt caverns large, deep, solution-mined, geology-limited
- Pilot plants needed:
 - Every major new industrial process
 - IRHTDF

3: Shortest path to benign, secure, abundant energy

- Anhydrous Ammonia (NH3) pipelines, tanks
 - Conversion, gathering
 - Transmission
 - Storage: tanks
 - Distribution
- Pilot plants needed:
 - Every major new industrial process
 - '08 Farm Bill Sec 9003:

"Renewable Fertilizer Research"

4: Ammonia's principal value

- NOT fuel or fertilizer
- Gather, transmit, store:
 - Large-scale, diverse, stranded renewables
 - FIRM time-varying-output renewables
 - Pipeline transmission, storage
 - "Renewables nuclear Synergy ...", C. Forsberg
- Benign, if from renewables
- Global opportunity
- Ammonia "sector", not "economy"
 - Transportation fuel: ground, air
 - DG electricity, CHP, retail value
 - Fertilizer

5: Pilot plants needed

- Every major new industrial process
- Diverse, large-scale, stranded
- Renewables-source systems
- IRHTDF ?

END 13 Oct 09 Sixth Annual Ammonia Fuel Conference

Kansas City

Bill Leighty The Leighty Foundation