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Why Nuclear-Powered Ammonia
Production?

• Many in the nuclear community are interested in nuclear-
powered hydrogen production

– Interest primarily motivated by talk of a hydrogen economy

– Focusing on a hydrogen economy makes  commercialization
dependent on the economics of hydrogen-powered cars

• It would be better to focus on current markets for
hydrogen

– If nuclear-powered is not economical source of hydrogen for
current users, it will not be an economical source of
transportation fuel

• Ammonia production is the logical place to begin
commercializing nuclear-powered hydrogen production

– Ammonia is the largest consumer of hydrogen in the world
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Topics for Discussion

• Large centralized nuclear-powered ammonia
production (2000 tonne / day plants)

• Ammonia production powered by small nuclear
reactors (IAEA defines small as <300 MWe)

• Transportable nuclear-powered hydrogen
production (if time permits)
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Major Process Decisions

• Which process should be used to produce hydrogen?
– Water electrolysis (existing technology)

– Steam electrolysis (developmental)

– Thermochemical cycles (developmental)

– Hybrid cycles (developmental)

• Which process should be used to produce nitrogen?
– Cryogen air separation (existing technology)

– Pressure-swing absorption (existing technology)

– Burning hydrogen to remove oxygen (existing technology)

• What type of nuclear power system should be used?
– Pressurized water reactor (PWR) (existing technology)

– Boiling water reactor (BWR) (existing technology)

– High temperature gas cooled reactor (HTGR) (developmental)

– Other high temperature reactors (developmental)
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Electrolytic Hydrogen Production

• Water electrolysis

– Commercial technology

– Produces pure hydrogen

– Could be operated using existing nuclear reactors

• Steam electrolysis

– Both Idaho National Laboratory (INL) and the Japanese
have developed processes

– Produces a hydrogen-steam mixture and pure oxygen

– Efficiencies of 40 - 50% are possible when powered by an
high-temperature gas-cooled reactor (HTGR)
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Hydrogen Production Using
Thermochemical Cycles
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Thermochemical and Hybrid Cycles

• Theoretical efficiencies of 50% - 65% have been reported
in the literature

– Literature efficiency estimates often neglect the energy
consumed by the separation processes

– Integrated process studies in the literature indicate
efficiencies of 40% - 45% are more realistic

• Requires very high temperatures

– HTGR and molten salt reactors are the only types of nucelar
reactors that can supply the required temperatures

• Capital cost of a iodine-sulfate process is about 8 times
that of a seam electrolysis process
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Choice for Hydrogen Production

• Steam electrolysis is the primary choice for hydrogen
production

– The efficiency is greater than water electrolysis

– The efficiency is comparable to the practical efficiencies of
thermochemical processes if powered by an HTGR

– Steam electrolysis can be powered by a pressurized water
reactor (PWR) or a boiling water reactor (BWR)

– Capital costs are significantly lower than thermochemical
processes

• Water electrolysis evaluated as a possible option

– Less efficient than steam electrolysis

– Capital cost are lower than steam electrolysis

– Proven technology
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Nitrogen Production

• Commercial ammonia production requires large volumes
of high-purity nitrogen

• Removing oxygen, carbon dioxide, and water are the
primary concern

– Water should be <150 ppm

– Oxygen and oxygen containing compounds must be <10
ppm

– Argon does not need to be removed
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Nitrogen Plant Selection
Based on Purity and Capacity

Figure reproduced from Kirk-Othmer Encyclopedia of Chemical Technology
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Pressure Swing Adsorption Will Be used
for Nitrogen Production

• Pressure swing adsorption (PSA) and cryogenic air
separation are appropriate processes for producing large
volumes of nitrogen

• PSA produces lower purity nitrogen than  cryogenic air
separation

– Removes carbon dioxide, but …

– The nitrogen product contains 0.1 -  2% oxygen

• Nitrogen with ppm levels of oxygen can be obtained from
PSA by reacting the oxygen with hydrogen

• The energy required for PSA plus the hydrogen for
removing the residual oxygen is much less than
cryogenic air separation
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Choice of Nuclear Power System

• A HTGR with a Brayton cycle is the primary choice for
the nuclear power system

– An HTGR has the highest operating temperatures which
favors high cycle efficiencies

– Brayton cycle is better suited for a HTGR than a Rankine
cycle

• A GE Advanced Boiling Water Reactor (ABWR) with a
Rankine cycle also evaluated as a possible option

– Less efficient than an HTGR

– An example of proven technology
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Baseline Process Design:
Steam Electrolysis Flowsheet
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Baseline Process Design:
Pressure Swing Adsorption Flowsheet
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Baseline Process Design:
Ammonia Process Flowsheet
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Baseline Process Design:
Fully Integrate Brayton Cycle

Primary Loop Working Fluid:   Helium
Primary Loop Pressure: ~70 atm

Secondary Loop Working Fluid:   Helium
Secondary Loop High Pressure: ~70 atm 
Secondary Loop Low Pressure: ~20 atm 
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Energy Consumption for HTGR-Powered
Ammonia Process with Steam Electrolysis

Nuclear
Reactor

Electricity
84%

Compressors
10%

Process Heat
6%
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Performance and Costs of Large
Nuclear-Powered Ammonia Plants
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Cost Breakdown for HTGR-Powered
Steam-Electrolysis Plant

Capital Costs Operating Costs
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Depreciation is the Largest Component of
Operating Costs for a Nuclear-Powered

Ammonia Plant

HTGR-Powered Plant Steam Reforming Plant
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Lessons for Study of Large Nuclear-
Powered Ammonia Plants

• Efficiency is not the most important factor affecting the
economic viability of a nuclear-powered ammonia plant

– Efficiency varied by a factor of 2 for cases studied

– Capital investment and operating costs only varied by 16%

• None of the options considered in this study was clearly
superior to the others

– Accuracy of the estimates is ±30%

– Capital costs of steam electrolysis and water electrolysis
differ by <10%

– Capital costs of an HTGR and a ABWR differ by <10%
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The US Department of Energy!s Global
Nuclear Energy Partnership (GNEP)

• The goal of GNEP is to expand the worldwide use of
economical, environmentally  responsible nuclear energy
to meeting growing electricity demand while virtually
eliminating the risk of nuclear material misuse

• An important element of the GNEP program is grid-
appropriate reactors

– Small, proliferation-resistant reactors suitable for
developing countries

– Built in standardized modules that generate 50 - 300 MWe

– Feature fully passive safety systems

– Simple to operate

– Highly secure
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The International Reactor - Safe and
Secure (IRIS) is an Example of a Grid-

Appropriate Reactor

IRIS is a Westinghouse-
designed PWR that
generates up to 335 MWe
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Other Modular Reactor Designs
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Performance and Costs of
Nuclear-Powered Ammonia Plants
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Alternatives to be Considered

• Nuclear options

– Large HTGR with steam electrolysis

– ABWR with steam electrolysis

– IRIS with steam electrolysis

– GTHTR with steam electrolysis

• Non-nuclear options

– Steam reforming natural gas with and without carbons
sequestration and a natural gas price of $7.25 / MMBTU

– Partial oxidation of coal with and without carbons
sequestration and a coal price of $35 / short ton

– Wind-powered plant based on water electrolysis
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Comparison of Alternatives
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Observations

• Nuclear-powered ammonia production has the lowest
operating costs

– 10 - 20% less than partial oxidation of coal

– 40 - 50% less than steam reforming methane

• Nuclear-powered ammonia production has the highest
capital costs

– 65 - 75% more than partial oxidation of coal

– 400 - 430% more than steam reforming methane

• Efficiency is not a good indicator of operating costs or
capital costs

– Efficiency of ABWR plant 60% less than HTGR plant

– Capital investment for ABWR plant only 7% greater

– Production costs for ABWR plant only  14% greater
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Before Tax Return on Investment Assuming
an Ammonia Price of $340 / tonne



34

Los Alamos
National  Laboratory

LA-UR-06-7180

$500/tonne

Ammonia Price Needed to Earn a 20% ROI
Before Taxes
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Observations

• At $340 / tonne, an ammonia plant is not an attractive
investment

• An IRIS-powered plant may be the best method of
producing ammonia without carbon dioxide emissions

– Highest rate of return at current ammonia prices

– Price to earn 20% ROI is comparable to natural gas with
carbon sequestration

– ROI is not sensitive to fluctuations in natural gas and
ammonia prices

– Does not required exotic technologies

• Capital investment, not efficiency, is the most important
factor governing the economics of nuclear-powered
ammonia production
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Summary and Conclusions

• The main advantages of nuclear-powered ammonia
production are

– Uses readily available raw materials (air and water)

– Low, stable operating costs

– No carbon dioxide production

• High capital costs are the major disadvantage of nuclear-
powered ammonia production

• Smaller, standardized modular reactors could reduce
capital costs

– Reduce construct cost and time

– Reduce licensing cost and time
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Ammonia is a Possible Petroleum-Free
Military Fuel

• Advantages

– Readily available world-wide

– Can be produced from a variety of raw materials

– Can be used in a variety of power systems
(diesel, turbines, fuel cells)

– Could be produced in or near the theater of
operations from air and water

• Disadvantages

– More difficult to handle and transport than
hydrocarbon fuels

– Not a good fuel for aircraft
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Some Considerations When Producing
Ammonia in the Theater of Operation

• Would like to maximize production, so yield is a more
important consideration than capital cost

• Would like to maximize flexibility

– Obtain power from local electrical grid if available

– Use transportable nuclear reactor if local power unreliable

• Need a transportable ammonia plant and reactor

• Would like to simplify set-up and operations
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Configuration for a Transportable
Nuclear-Powered Ammonia Plant

• The proposed ammonia plant is electric powered and
uses steam electrolysis to produce hydrogen

– Can be powered by a nuclearreactor or the local electrical
grid

– Simplifies the interface between the reactor and ammonia
plant

– Steam electrolysis plant consumes ~20% less power than a
water electrolysis plant

• The ammonia plant will be powered by a small 10-MWt
gas-cooled reactor

– A pebble-bed reactor is the most likely choice

– Power generated a a Brayton cycle or Stirling cycle
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Efficiencies of a Small Ammonia Plant
Powered by a 10 MWt Reactor

0.2811328PWR

0.3915850Pebble Bed

0.4216950Pebble Bed

Efficiency

(MJfuel / MJt)

Production
Rate

(tonne/day)

Reactor Outlet
Temperature
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Skid Mounted Sections of a Small
Ammonia Plant Commercially Available

• Commercially available
equipment

– Electric-powered boilers

– PSA nitrogen plants

– Ammonia refrigeration

– Compressor

• Other equipment expected
to be small

– Electrolyzers

– Ammonia reactors

Small PSA nitrogen plant

Likely scale of electrolyzers 
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The TRISO Fuel Particles Used in a Pebble
Bed Reactor Are the Primary Barriers to

the Release of Radioactive Materials

Will withstand a loss-of-coolant
accident without melting

Will withstand air ingress
without burning
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A Proposed Pebble Bed Reactor Design
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Reactor Shielding Provided by
an Earthen Barrier

Nuclear Reactor Ammonia Plant


