

Direct Ammonia Fuel Cells for Distributed Power Generation and CHP Andrew McFarlan, Nicola Maffei, Luc Pelletier

CLEAN ENERGY TECHNOLOGIES

Presented at:

"Ammonia – The Key to a Hydrogen Economy"

Argonne National Laboratories

Oct 13-14, 2005

CETC CANMET ENERGY TECHNOLOGY CENTRE

Rationale for Direct Ammonia Fuel Cells

Current alternatives for hydrogen supply

Large scale hydrogen production

To fuelling stations with tube truck as either CH2 or LH2

To fuelling stations with pipelines from central production unit

Local hydrogen production

On-site water electrolysis on fuelling station based on electricity and water

On-site natural gas reforming on fuelling station

Other alternatives: 1 H₂ from ammonia

1 H₂ from methanol

Date: 2002-08-19 - Page: 9

Source: Norsk Hydro

Energ

CETC CANMET ENERGY TECHNOLOGY CENTRE

Large scale CO₂ free hydrogen production

Source: Norsk Hydro

Overall Efficiency and CO₂ Emissions During Production and Distribution of Hydrogen Energy Carriers

(H. Anderson, World Hydrogen Energy Conference, Montreal, 2002)

Conclusions drawn from studies done by Norsk Hydro:

- CO₂ capture and sequestration contributes only slightly to the losses in the full hydrogen value chain
- Central hydrogen and ammonia production seem to be the most efficient way to produce CO2-free energy carriers
- Ammonia infrastructure development is easier because truck transport is possible – supply and demand will be in balance through time
- On site natural gas reforming and methanol steam reforming have highest CO₂ emissions

How does ammonia measure up as a fuel for fuel cells?

Fuel property	Ammonia	Methanol
Energy consumed to make, GJ/m.t	. 27-28	28-31
Energy density, MJ/Kg (HHV)	22.5	22.7
Hydrogen content, % by weight	17.8	12.6
CO ₂ emissions, Kg/Kg	0	1.38
Hazards	nonflammable toxic	flammable toxic
Transport/Storage	corrosive liquified gas 126 psia@20°C	noncorrosive liquid
Volume equiv. to 50L gasoline	137	101

Solid Electrolyte Ammonia Fuel Cell

What is the concept?

- Ammonia is catalytically decomposed to N₂ + H₂ at anode
- high temperature, low pressure favour equilibrium limited decomposition
- Protons transport across a solid proton conducting electrolyte.
- Removal of hydrogen at the anode drives decomposition reaction to completion.
- H₂/air oxidation at the cathode provides chemical driving force for the fuel cell AND provides the heat of reaction for ammonia decomposition.
- Products of the fuel cell are nitrogen, water, electric power and heat.

Electrochemical Reactions in a Direct Ammonia Fuel Cell Using Proton Conducting Electrolyte

ANODE (fuel side)	$2 \text{ NH}_3 + \text{heat} \rightarrow 3 \text{ H}_2 + \text{N}_2$
	$3 \text{ H}_2 \rightarrow 6 \text{ H}^+ + 6 \text{ e}$

CATHODE	
(air side)	

 $3/2 O_2 + 6 e \rightarrow 3 O^{2-}$ $6 \text{ H}^+ + 3 \text{ O}^{2-} \rightarrow 3 \text{ H}_2\text{O} + \text{heat}$

OVERALL

$$2 \text{ NH}_3 + 3/2 \text{ O}_2 \rightarrow \text{N}_2 + 3 \text{ H}_2\text{O}$$

What is the ammonia fuel cell energy balance?

anada

The historical market price of anhydrous ammonia in the past decade has been about \$150/ton:

At \$150/ton, the fuel cost of electricity is:	\$0.05/KWH
At \$300/ton	\$0.10/KWH

In Q4 2003, Ontario wholesale spot market for electricity (NGCC power at \$7MMBtu/MWH) was around \$0.05/KWH. Renewable "Green" power traded at around \$0.09-\$0.10/KWH.

A CO₂ emissions penalty of \$150/ton for electricity generation is equivalent to about 0.05/KWH (NGCC).

CETC CANMET ENERGY TECHNOLOGY CENTRE

Fuel Cell Materials R&D Activities

Powder XRD patterns of BCG calcined at 1350° C (a), sintered at 1500° C (b), 1550° C (c), 1600° C (d), 1650° C (e).

Pt/BCG/Pt Ammonia Single Cell Fuel Cell

J. Electrochemical Society, 2004, 151(6), A930

Canada

Pt/BCG/Pt Ammonia Single Cell Fuel Cell

J. Electrochemical Society, 2004, 151(6), A930

Cathode Performance Characteristics for Series of Cells

N1= NiO-BCG/BCG/Pt N2=NiO-BCG/BCG/LSC N3=NiO-BCG/BCG/LCFC

J. Power Sources 2004, 136, 24

Doubly-doped BaCe_{0.8}Gd_{0.19} Pr_{0.01}O_{3-*δ} Electrolyte

J. Power Sources 2005, 140, 264

A green 2" dia BCGP disc formed by tape casting

2" and 1" dia. BCGP discs after sintering

R&D Activities Using Commercially Available Conventional SOFC Materials

Direct Ammonia Fuel Cell Using Commercial O²⁻ Conducting Electrolyte

Compares proton conducting (in-house) and oxygen ion conducting (commercial) materials at 700°C in ammonia.

Due to their higher conductivity, proton conducting electrolyte materials can operate at lower temperatures than O²⁻ conducting materials.

Commercial Opportunities for Direct Ammonia Fuel Cells

In stationary distributed power generation:

UPS for Critical Ammonia Refrigeration:

- Experienced in handling ammonia
- Market is expanding due to shift to environmentally friendly refrigerants
- Insatiable power requirement
- High overall efficiency in CHP cycles
- Requirement for uninterruptible power

We are currently talking to a Canadian fuel cell manufacturer and ammonia producers about doing a collaborative field trial.

In transportation: Railway Locomotives?

Acknowledgements

Our R&D team:

CANMET Materials Technology Laboratories Dr. Nicola Maffei

National Research Council – ICPET Mr. Yeong Yoo

CANMET Energy Technology Centre Mr. Luc Pelletier Dr. A. McFarlan Dr. J.P. Charland Mr. Rob Brandon

Financial support from: NRCan - Office of Energy Research and Development

CETC CANMET ENERGY TECHNOLOGY CENTRE

Thank You

