

Recovery of Ammonia Energy from Municipal and Agricultural Wastewater: Ammonia Electrolysis

<u>Gerardine G. Botte</u> Associate Professor, ChE Director Electrochemical Engineering Research Laboratory

> John Holbrook Director AmmPower LLC

Ammonia the key to US energy independence Golden, Colorado October 2006

Outline

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Electrolysis of ammonia effluents
 - Hydrogen Production
- Economic Analysis
- Conclusions
- Future Work

- Background
- How to get energy out?
- Ammonia
 Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

Background

- All mammals (human and animal) produce liquid and solid waste which contains considerable "undigested" energy
- Extensive activity ongoing worldwide in extracting residual energy from solids. Most visible example is anaerobic digesters, but biomass gasification and anaerobic pyrolysis (destructive distillation) also viable.
- Little R&D effort in capturing the residual energy in liquid waste, which is largely in the form of ammonia and ammonia compounds (e.g. urea)
- Mammal urine contains ~5% urea; average human excretes 3-5 liters of urine daily; average cow excretes 5-7 gallons

RUSS COLLEGE of Engineering Technology

- Background
- How to get energy out?
- Ammonia
 Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

How to get energy out?

- Aqueous urea is chemically 2 parts NH₃ and 1 part CO₂ (overall about 8% hydrogen)
- Urea decomposes naturally at ambient temperatures to yield NH₃ via urease bacteria action, but this is a sluggish process
- Above 500F urea decomposes thermally very rapidly; this process used extensively in de-NOx (NH₃ + NOx → N₂ + H₂0)
- Urea also broken down in pressurized water reactors at ~200C, but much of the energy in the urea is consumed
- Electrolysis of ammonia/urea solutions could provide a low-T, energy efficient way to get the energy out of urea

RUSS COLLEGE of Engineering Technology

Ammonia Electrolysis: In Situ H₂ Production

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

Anode: Ammonia Oxidation

 $2NH_3 + 6OH^- \rightarrow N_2 + 6H_2O + 6e^- E^0 = -0.77 \text{ vs SHE}$

Cathode: Water Reduction

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^- E^0 = 0.82 \text{ V vs SHE}$

• Overall Reaction $2NH_3 \rightarrow N_2 + 3H_2 E^0 = 0.059 V$

Comparison with Water Electrolysis

Theoretical (Thermodynamics) Calculations

- Using Solar Energy at \$0.214/kW-h
- Ammonia cost at \$300 per ton metric

	Water Electrolysis	NH ₃ Electrolysis
Energy (W-h/g H ₂)	33	1.55
Hydrogen Cost (\$/kg H ₂)	7.1	2.00

95% LOWER ENERGY

71 % CHEAPER H₂

Background

• How to get energy out?

Ammonia Electrolysis

- Effluents
- H₂ Production
- Economic Analysis
- Conclusions
- Future Work

Electrochemical Engineering Research Lab, Ohio University

SAVING

Advantages of Technology

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

- Minimization of hydrogen storage problem
- Electrolytic on-board reforming
- Zero green house emissions
- Fuel Flexibility
- Low temperature operation
- Compatibility with renewable energy sources (e.g. solar, wind)
- Fertilizer plants, municipal waste water treatment stations, and modern engineered dairy/hog/poultry farms could potentially produce their own energy from waste

Technology Objectives

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

- Ammonia removal from wastewater
 - Protect rivers, lakes and groundwater
 - Protect atmosphere
 - Reduce wastewater processing costs
- Efficient hydrogen generation
 - In-situ energy production
 - Renewable source
 - Low-cost hydrogen

Project Vision

Key Point: Electrolysis of Ammonia Effluents (why?)

Ammonia Air Emissions

Over 5 Million Ton per year (2002)¹

Ammonia Air Emissions

Impact of Recovery of Effluents for H₂ Production

- Assumptions
 - Recovery of fertilizer, livestock, and residential sources
 - Use to power residential houses with a consumption of 12,000 Kw-h per house
 - Combination of solar panel with ammonia electrolytic cell (AEC)
- Impact
 - Produce enough energy to power over 900,000 residential houses per year if all ammonia emissions captured from fertilizer, livestock, and residential sources
 - Minimization of 1% CO₂ emissions coming from the residential sector by replacing fossil fuels

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

RUSS COLLEGE of Engineering Technology

Challenges. Technology implementation

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

- Design Electrodes capable of electrolyzing ammonia at low concentrations
- Unknown kinetics at low concentrations of ammonia
- Unknown effect of contaminants present in waste waters (urea, proteins, salts, suspended solids, etc)
- Durability/reliability/lifetime of cells and electrodes

Objectives

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

 Design and evaluate electrode materials to improve kinetic performance at low concentrations of Ammonia

Methodology

Methodology

Substrates

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

- Two different substrates tested
 - Raney Nickel
 - Carbon fibers
- Substrates plated with combinations of noble metals for the electro-oxidation of ammonia

Testing Cell

Removal of Ammonia

Performance of Pt-Ir-Rh Electrode, Initial conditions 21.5 mM NH₃ and 0.2M KOH

Faradaic Efficiency and Conversion at 25 mA/cm²

Where:

x: conversion of ammonia C_o: initial concentration of ammonia, mM C_f: final concentration of ammonia, mM η: ammonia faradaic efficiency m_f: final mass of ammonia, g m_t: theoretical mass of ammonia, g Electrochemical Engineering Research Lab, Ohio University

Successfully demonstrated

Key Point: Hydrogen Production, Ammonia as a Hydrogen Carrier

Objectives

- Background
- How to get energy out?
- Ammonia Electrolysis
 - Effluents
 - H₂ Production
- Economic Analysis
- Conclusions
- Future Work

- Evaluate the Feasibility of the technology for Distributed Size Onsite Hydrogen Production (480 kg H₂/day)
 - Energy balance
 - Economics analysis

Energy Balance

Operating Options (Day): Theoretically

Economics Analysis and Comparison with Other Technologies for Distributed Size Onsite Hydrogen Production (480 kg H₂ per day)

- 1. Same assumptions as the Hydrogen Economy by the National Academy of Science
- 2. Cost of Ammonia \$300 per Metric Ton
- 3. Cell Operating at 50 °C with 0.058 cell Voltage
- 4. Energy consumption of by electrolysis 1.55 Kw-h/kg of H_2 . 100% Electric Efficiency
- 5. Electricity at \$0.07 per kwh

TOTAL CAPITAL COST \$ 0.743 million CAPITAL CHARGES: \$ 20,000 /year TOTAL VARIABLE COST \$ 285,000 /year AMMONIA at \$ 300 per ton ELECTRICITY at \$ 0.07 per kwh Up to 1000 kg H₂/ day

Economic Analysis at Current Operating Conditions

Testing Loop

The Ammonia Electrolytic Cell

Optimization of AEC Performance

Results							
	Rundomized Order	KOH Concentration (M)	NH ₃ Concentration (M)	Current (mA)	Temperature (°C)	Energy Consumption (W-h/gH ₂)	
	1	0.5	0.5	300	25	15.5	
	2	0.5	0.5	100	25	12.2	
	3	0.5	5	100	25	9.0	
	4	0.5	5	300	50	11.5	
	5	7	0.5	300	50	11.3	
	6	7	5	300	25	13.6	
]	7	0.5	0.5		50	12.2	Ļ,
/=0.33 \	8	7	5	100	50	8.6	L
/=0.34 \	9	0.5	5	100	50	8.7	ļ.
	10	7	0.5	100	50	9.4	ſ
	11	7	0.5	300	25	14.0	
	12	0.5	5	300	25	14.4	
	13	0.5	0.5	100	50	9.9	
	14	7	5	300	50	10.2	
	15	7	0.5	100	25	11.6	
	16	7	5	100	25	10.0	

Comparison with Other Technologies for Distributed Size Onsite Hydrogen Production (480 kg H_2 per day)

- 1. Same assumptions as the Hydrogen Economy by the National Academy of Science
- 2. Cost of Ammonia \$300 per Metric Ton
- 3. Energy consumption based on real laboratory data
- 4. Electricity at \$0.07 per kwh

Current Technologies	Natural Gas Steam Reforming*	Water Electrolysis (52.49 Kwh/kg H ₂ . 75% Electric Efficiency)	NH ₃ Electrolysis (1.55 Kwh/kg H ₂ . 100% Electric Efficiency	NH ₃ Electrolysis (8.7 Kwh/kg H ₂ . 18.5% Electric Efficiency
Capital Investment (Million \$)	1.85	2.54	0.743	1.02
Hydrogen Cost (\$/kg H ₂)	3.51	6.58	2.00	3.37

SAVINGS 8.2 % CHEAPER H₂ than NG reforming 48.7% CHEAPER H₂ than Water Electrolysis

At \$ 0.07 KWh

Sensitivity Analysis

- 1. Cost of Power can change depending on the source
- 2. The cost of ammonia can change. If ammonia from waste is used, it is estimated that no charges will be involved
- 3. Current density: 25 mA/cm²
- 4. Cell Operating at 50 °C with 0.34 cell Voltage

Conclusions

- Efficient removal of ammonia achieved
- Ammonia Electrolysis is much cheaper than water electrolysis
- The ammonia electrolytic cell can operated with any source of renewable energy
- H₂ can be produced at less than \$2.00 per Kg for distributed power
- The economic feasibility of the technology for distributed power has been demonstrated
- The key for the process is to use ammonia from waste. In which case, up to \$100 per ton metric of ammonia can be spent to purify the waste stream if needed.
- Ammonia electrolysis may be even cheaper as NO hydrogen storage tanks NEEDED.

Farm of the Future

Future Work

- Improve efficiency of the process
- Determine reaction rate to scale up and design AEC to pilot scale to determine more accurate costs
- Determine energy efficiency of Power Source (integrated AEC/PEM fuel cell)
- Define pre-treatment units to use ammonia from waste

Acknowledgements

- Army Research Office (DURIP award)
- NSF Path Award
- 1804 Fund Award by the Trustees of the Ohio University Foundation Office of the Vice-President for Research, Ohio University
- Student Enhancement Award (Office of the Vice-President for Research, Ohio University)
- Dr. Ingram Department of Physics, Ohio University

The EERL Group

For more information visit: http://webche.ent.ohiou.edu/eerl/

Contact: Gerri Botte at botte@ohio.edu

www.ohio.edu/engineering

