BioAmmonia–A Comparison with Other Biofuels

San Francisco

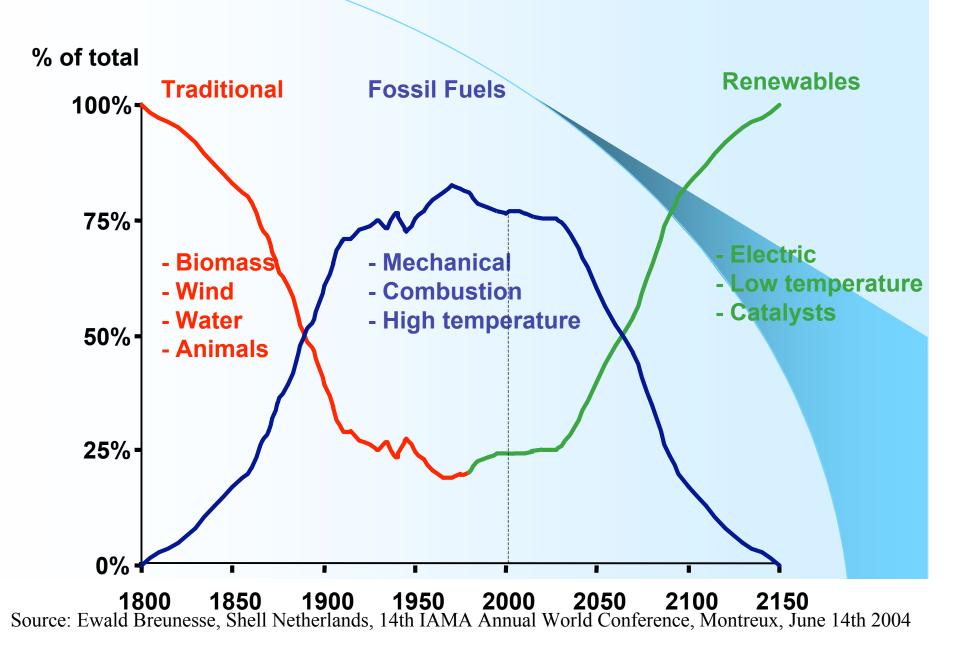
October 15-16, 2007

Norm Olson – Iowa Energy Center

www.energy.iastate.edu

Meeting Objectives

- Discuss Pro's and Con's of Ammonia as a Transportation Fuel
- Provide Facts to Help Enlighten Perspectives
- Report Progress
- Determine Next Steps


Background Information

G Oil Experts See Supply **Crisis in Five** Years International Energy Agency July 10, 2007

Energy Independence Goals

- Use U.S. Resources for U.S. Energy Needs
- Eliminate Petroleum Imports
- Provide a Bridge to Renewable Energy
- Protect the Environment
- Create U.S. Jobs/Improve Economy
- Eliminate Ammonia Imports

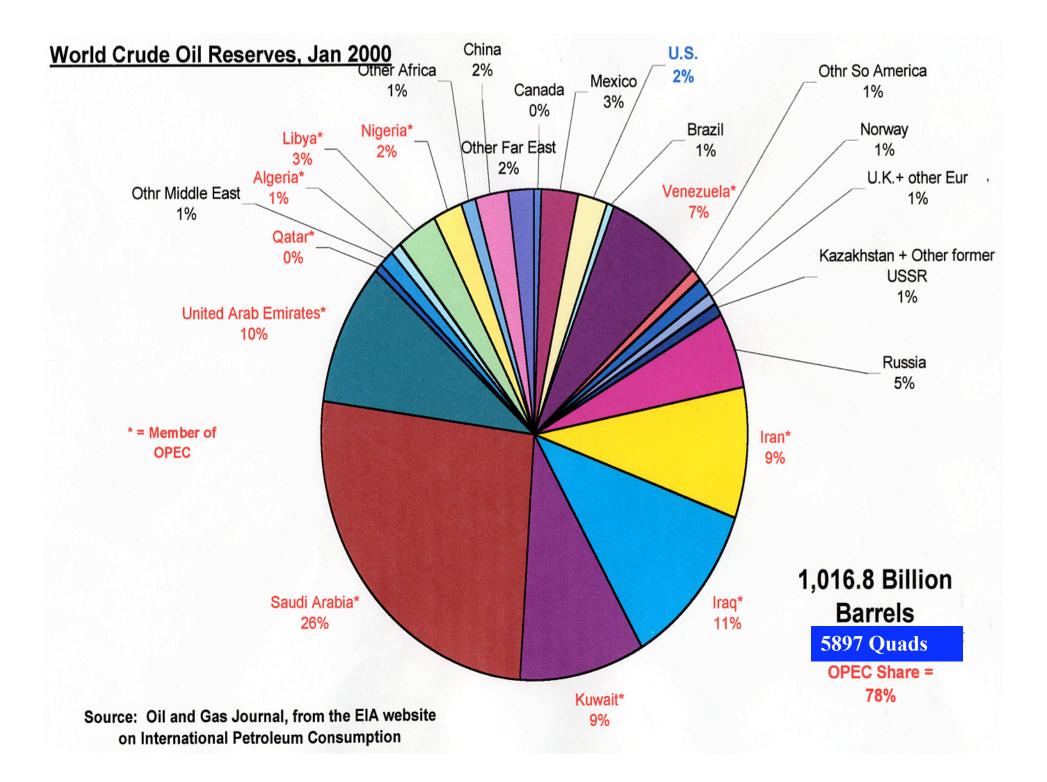
The Fossil Fuel Era

aljazeera.net

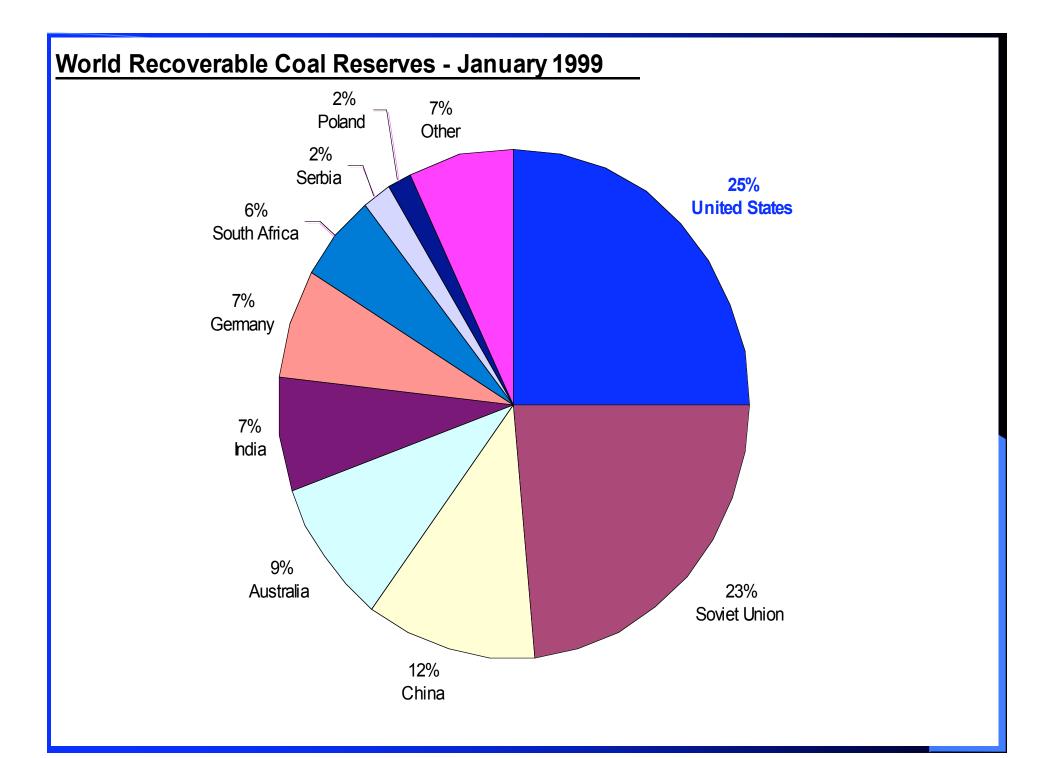
Increasing dependence on oil imports By Ahmad al-Quni Sunday 10 August 2003, 12:43 Makka Time, 9:43 GMT

http://english.aljazeera.net/NR/exeres/2CDA8F31-A5D7-4071-B12D-1B804E1C15EE.htm

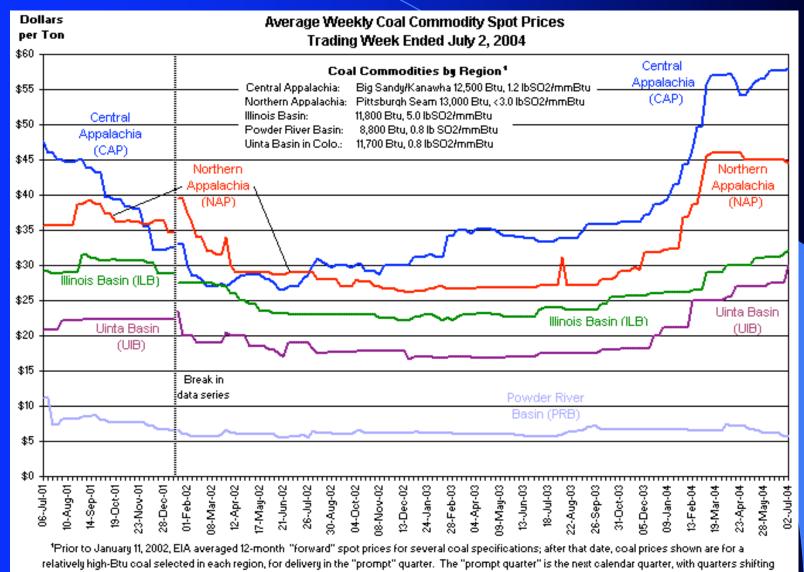
Per Capita Consumption (BPY): US - 28, China - 2 US imports over 60% of Petroleum (2004)


Iraq oil - the target for years By Ahmad Quni

Really?!


Saudi Oil Exec: Only 18% of World's Crude Reserves Tapped Wednesday, September 13, 2006

VIENNA, Austria — The world has tapped only 18 percent of the total global supply of crude, a leading Saudi oil executive said Wednesday, challenging the notion that supplies are petering out. Abdallah S. Jum'ah, president and CEO of the state-owned Saudi Arabian Oil Co., known better as **Aramco**, said the world has the potential of 4.5 trillion barrels in reserves — enough to power the globe at current levels of consumption for another 140 years.


Oil Reserves

Coal Reserves

US Coal

forward after the 15th of the month preceding each quarter's end.

Source: with permission, selected from listed prices in Platts Coal Outlook, "Weekly Price Survey."

Hydrogen Sources

RenewablesFossil FuelsNuclear

Renewable Energy Options

Wind
Solar
Hydro
OTEC
Biomass
Others

Enough Biomass?

2002 Consumption	Quads
Petroleum	38.11
Natural Gas	23.37
Coal	22.18
Nuclear	8.15
Renewable	5.25
Corn potential (including stalk, 10 bil. bu.)	8.40

Solar, Wind, Biomass

Technology	Converter	Capacity	Maximum	Land per	Year for:
	Efficiency	Factor	Packing	km2/GW	m2/GWh
Flat-Plate PV	10-20%	20%	25-75%	10-50	5000 - 25,000
Wind	Low to 20%	20%	2-5%	100	140,000
Biomass	0.1% total		High	1000	500,000

Source:

http://www.nrel.gov/docs/fy04osti/35097.pdf

Fossil Fuel Hydrogen Sources

Petroleum Natural Gas Coal

Dakota Gasification

Over 20 years of producing natural gas, ammonia and other valuable chemicals from US coal.

Al Lukes - \$4.50 Nat. Gas from new coal gasification plants.

• New coal to ammonia plants

Europe

The Homepage of the R&D Component of the European Commission Clean Coal Technology Programme

euro-cleancoal.net

Chemistry

From Coal

C + H2O ----- CO + H2

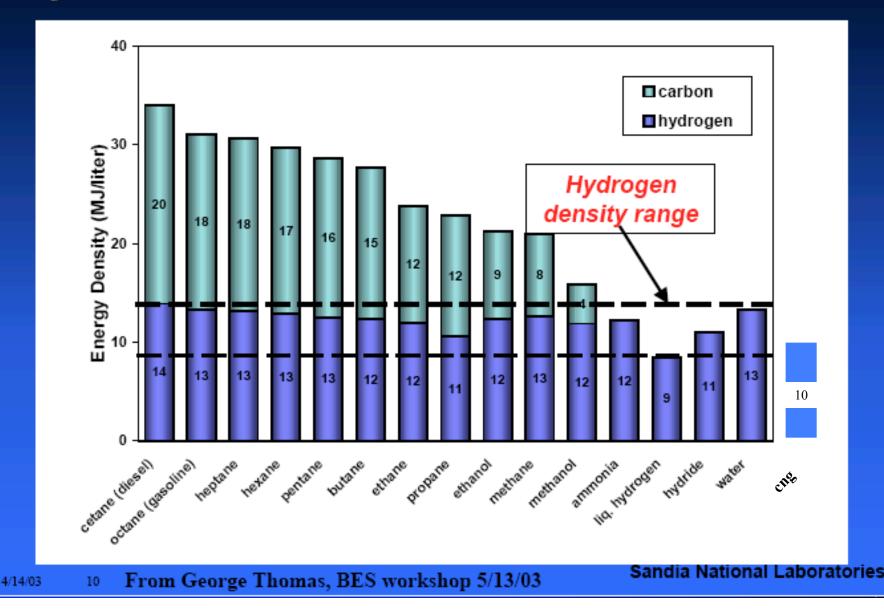
CO + H2O ----- CO2 + H2

From Natural Gas

CH4 + H2O ----- CO + 3H2 (Steam Reforming)

CO + H2O ----- CO2 + H2 (Water Shift)

Ammonia


N2 + 3H2 ----- 2NH3

Performance

Hydrogen Carriers

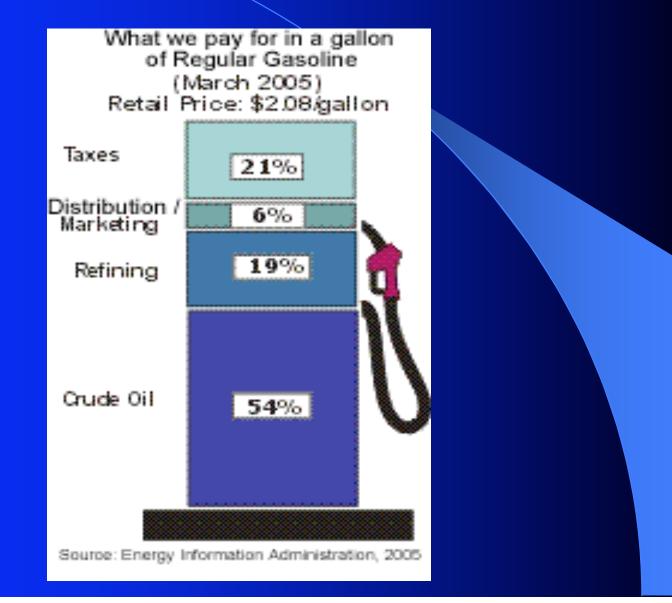
Liquefied Hydrogen (H₂) 100%
Compressed Hydrogen (H₂) 100%
Natural Gas (CH₄) 25.0%
Ammonia (NH₃) 17.6%
Ethanol (C₂H₆O) 13.0%
Methanol (CH₄O) 12.5%

Energy densities (LHV) for fuels in liquid state

Freedom Car Targets w/ 2005 NH3 Comparison

Parameter	Units	2007	2010	2015	NH3 (2005)
Spec. Energy	kWh/kg	1.5	2	3	3.0
Energy Density	kWh/L	1.2	1.5	2.7	2.7
Storage Cost	\$/kWh	6	4	2	2.1
Fuel Cost \$/ga	al. Gas equiv	3	1.5	1.5	1.7*

*\$280/ton ammonia


Fuel Costs

June 2003 Chemical Market Reporter*

- Ammonia \$200/metric ton*
- Gasoline \$1.20/gallon
- Methanol \$0.79/gallon*
- Ammonia \$270/short ton
- Ethanol \$1.25/gallon* (\$2.70, 9/05)
- Gasoline \$2.00/gallon
- Wind \$0.035/kwh x 2 (electrolyzer)
- Gasoline \$2.50/gallon
- Ethanol \$2.70/gallon (9/05)

\$/MMBtu \$10.01 \$10.52 \$13.68 \$14.86 \$16.44 \$17.54 \$20.51 \$21.92 \$35.51

Gasoline Costs – March 2005

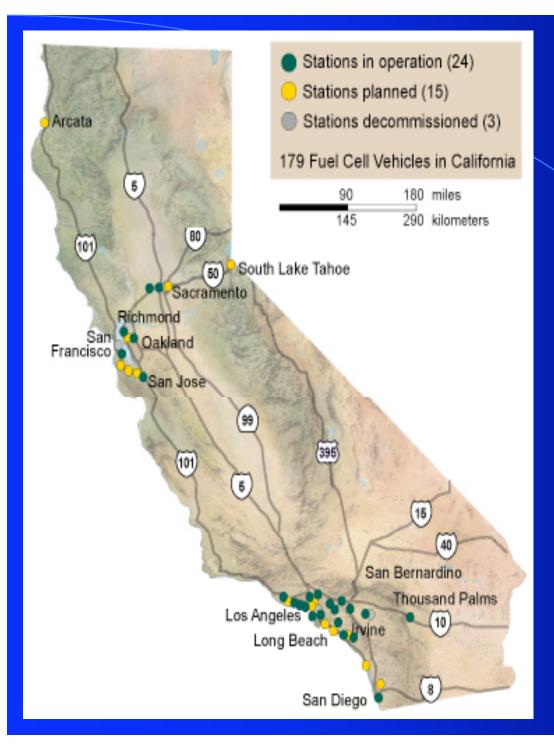
Future Compatibility

Hydrogen + Nitrogen Ammonia

Storage & Delivery – Pipeline, Barge, Truck, Rail

Stationary Power

Fertilizer


Transportation

Economic Impacts

Current (2003) Imports: ~ 13 million bpd = \$114 billion/year (a) \$24/bbl, \$228 billion (a) \$48/bbl 2003 Gasoline Consumption – 8,756,000 bbl/day 15.3×10^{15} Btu/year = 850 million ton/year ammonia 1250 new plants (a) 650,000 ton/year each \$562 billion investment @\$450 million/plant 375,000 new jobs <u>\$5 billion annual new tax revenue/year (employees only)</u>

Delivery Infrastructure

Typical New Infrastructure Filling Stations – fuel tanks, Chicago Stations (20) Delivery (cold or pressurized?) Natural Gas/Petroleum Pipeline retrofit? One fuel for all applications simplifies fuel infrastructure. Simplified refineries and formulations

California Hydrogen Stations

http://www.fuelcellpartnership.org/ fuel-vehl_map_print.html

Iowa Hydrogen Refueling Stations

Over 800 retail ammonia (the "Other Hydrogen") outlets currently exist in Iowa.

Ammonia Pipeline

Ammonia Storage & Transport

Anhydrous Application

Anhydrous ammonia expands into a gas as it is injected into the soil where it rapidly combines with soil moisture.

End Use Applications

Spark-Ignition Internal-Combustion Engines (w/ethanol?)
Diesel Engines (w/biodiesel?)
Direct Ammonia Fuel Cells
Gas Turbines

•Gas Burners

Health And Safety

 "Safety assessment of ammonia as a transportation fuel", Nijs Jan Duijm, Frank Markert, Jette Lundtang Paulsen, Riso National Laboratory, Denmark, February 2005

US DOT Statistics 1993-2003

Chemical	#Incidents	Fatalities	Rel. Freq.
Gasoline	3936	82	5.3x
LPG	915	9	2.5x
Anhyd. Ammonia	1016	4	

Scapegoat? Ammonia NH3 Ephedrine and Pseudoephedrine

Methamphetamine

 $C_{10}H_{15}NO$ $C_{10}H_{15}N$

VOC's + NOx + O2 + Sunlight = ozone = smog +NOx + H2O + ammonia = ammonium nitrate = smog-If the NOx doesn't form ammonium nitrate it goes to ozone (worse) Fossil fuels (the source of NOx) are the problem, <u>not</u> ammonia Ammonia is actually used to clean up NOx emmissions at coal plants

Ammonia Toxicity Ratings

Corresponding NFPA Index	Toxicity Rating	Descriptive Term	LD ₅₀ (wt/kg) single oral dose rates	LC ₅₀ (ppm) 4 hours inhalation rate
4	1	Extremely Toxic	< 1 mg	< 10
3	2	Highly Toxic	1-50 mg	10-100
2	3	Moderately Toxic	50-500 mg	100-1000
1	4	Slightly Toxic	500-5000 mg	1000-10,000
0	5	Practically non-toxic	500-15,000 mg	10,000-100,000
	6	Relatively Harmless	> 15,000 mg	> 100,000
		Ammonia - NH ₃	$LD_{50} = 350$	$LC_{50} = 2000$

The NFPA rating for ammonia is 3 taking into account the physical stress of emergency people. The actual NFPA health ratings based solely on the actual LD_{50} and LC_{50} numbers would be 2 and 1 respectively. Since we are most concerned with inhalation risks, the NFPA rating based on actual test data for ammonia should be 1 or "slightly toxic".

NFPA Classifications

Substance	Health	Flammability	Reactivity
Ammonia	3 ?!	1	0
Gasoline	1	3	0
Benzene, Ethyl benzene	3	3	0
MTBE	1 ?!	3	0
Natural gas, Methane	1	4	0
Hydrogen	0	4	0
LPG	1	4	0
Methanol, Ethanol ?, Toluene, Hexane	2	3	0

NFPA ratings span from 0 to 4 (0 = no special hazards, 4 = severe hazards). Based on actual test data, the NFPA Health rating for ammonia should be 1 (as an inhalation risk). It is interesting to note that gasoline gets a Health Rating of 1, yet many of it's significant components have Health Ratings of 2 and 3.

Progress

- •Over 50% efficiency demonstrated in an IC engine
- •Direct ammonia fuel cell
- •Wind to ammonia demonstration funded
- •95% ammonia, 5% diesel, full power, LOWER NOx!!!
- •New ammonia synthesis technologies
- •Irrigation pump demonstration with SI engine

Summary

- Ammonia Meets Most 2015 Freedom Car Targets Today
- Ammonia Has a Very Extensive, Worldwide Delivery and Storage Infrastructure Already in Place
- Only H2 and NH3 Have No Tailpipe Greenhouse Gas Emissions
- Only H2 and NH3 Can be Made From Electricity and Water (+air for NH3)
- Ammonia From Fossil Fuels Now
- Ammonia From Renewables in the Near Future
- Diesel and Spark-Ignition IC Engines Now
- Fuel Cells in the Future
- Ammonia Looks Very Good Now and in the Future
- Ammonia is Safer Than Gasoline and Hydrogen