Ammonia as a Transportation Fuel II

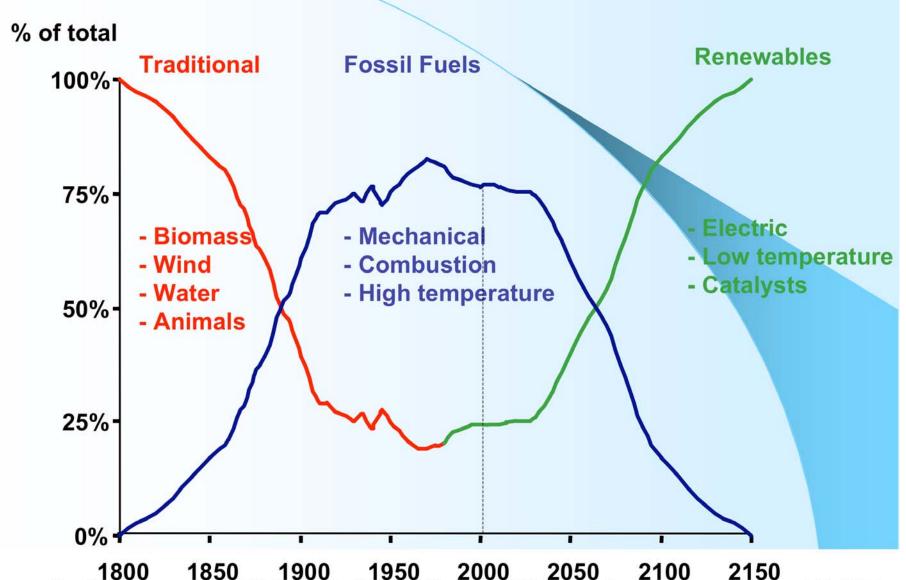
Argonne National Labs

October 13-14, 2005

Norm Olson –Iowa Energy Center

www.energy.iastate.edu

Meeting Objectives


- Discuss Pro's and Con's of Ammonia as a Transportation Fuel
- Provide Facts to Help Enlighten
 Perspectives
- Determine Next Steps

Energy Independence Goals

- Use U.S. Resources for U.S. Energy Needs
- Eliminate Petroleum Imports
- Provide a Bridge to Renewable Energy
- Protect the Environment
- Create U.S. Jobs/Improve Economy
- Eliminate Ammonia Imports

Background Information

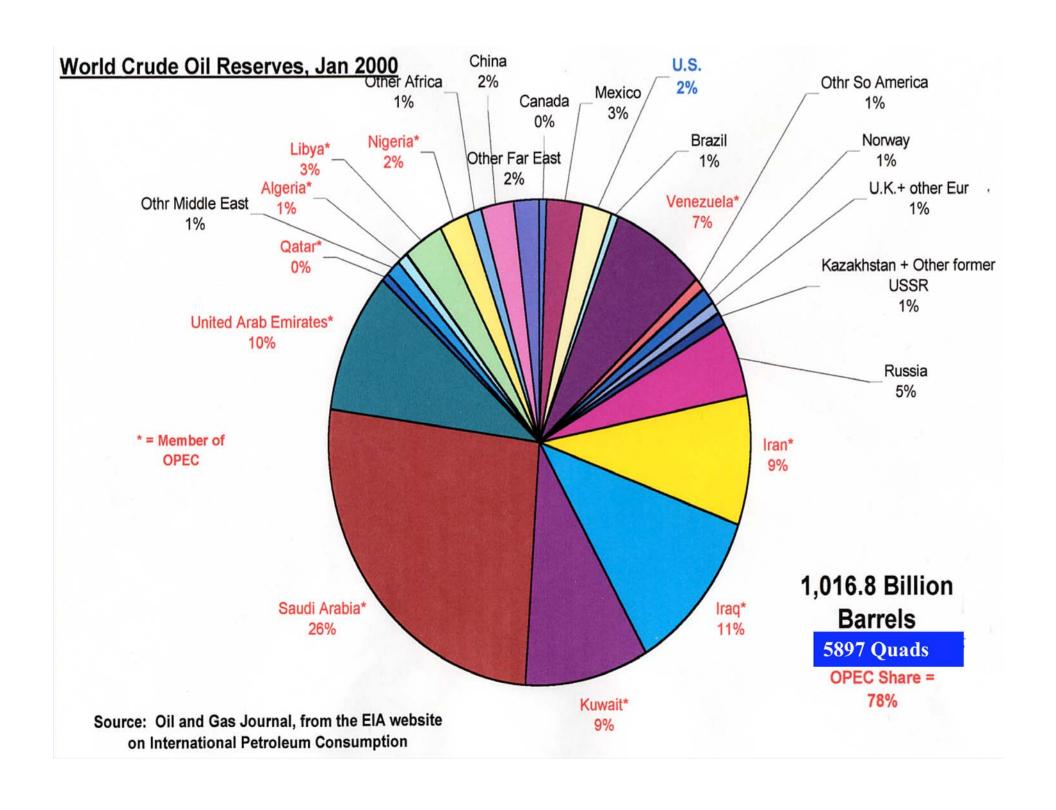
The Fossil Fuel Era

Source: Ewald Breunesse, Shell Netherlands, 14th IAMA Annual World Conference, Montreux, June 14th 2004

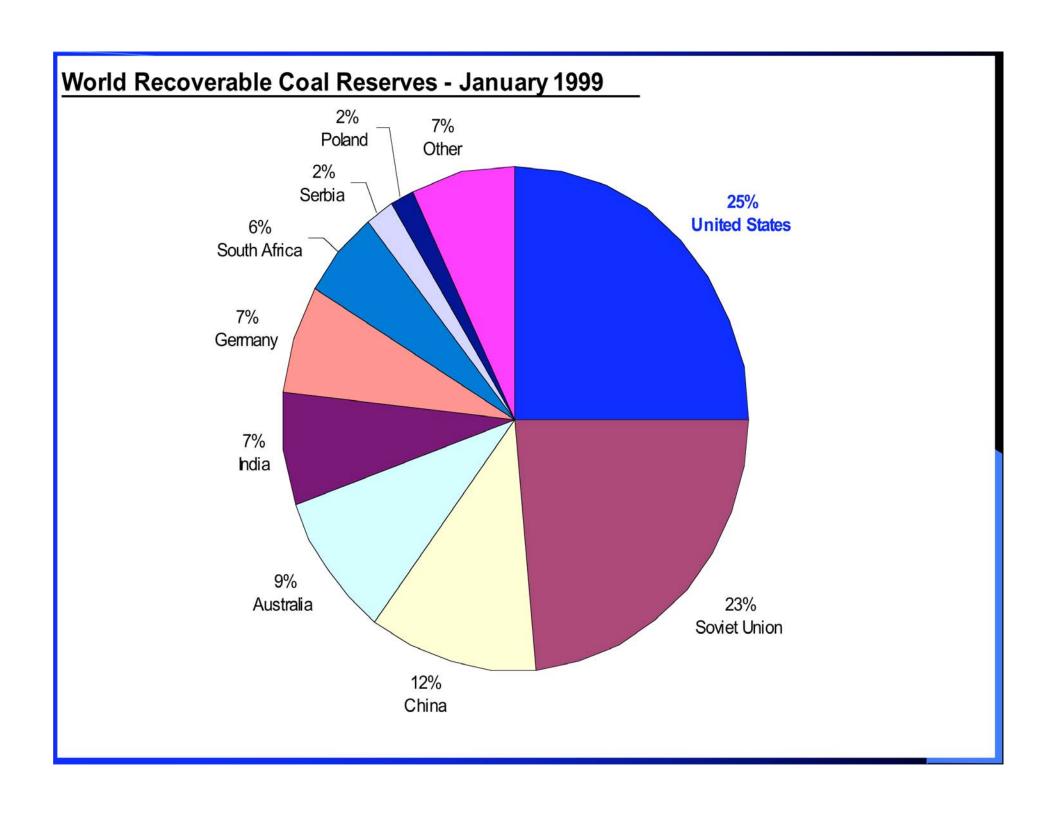
aljazeera.net

Increasing dependence on oil imports

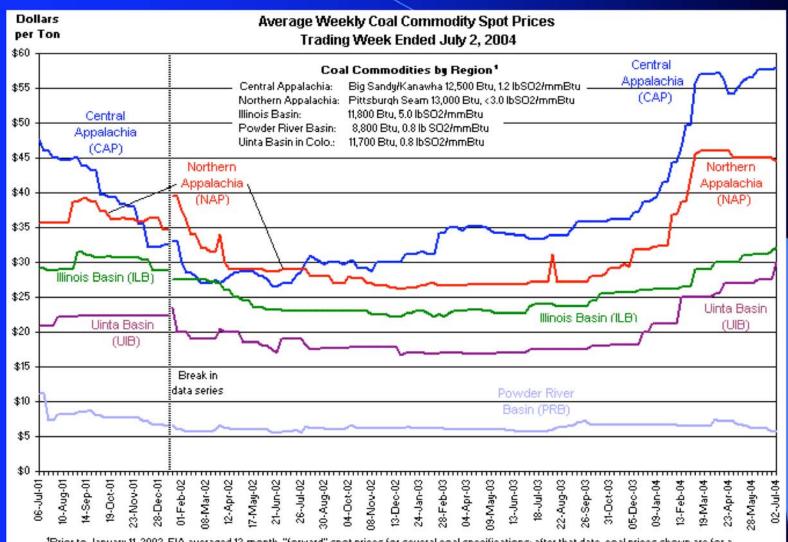
By Ahmad al-Quni
Sunday 10 August 2003, 12:43 Makka Time, 9:43 GMT


http://english.aljazeera.net/NR/exeres/2CDA8F31-A5D7-4071-B12D-1B804E1C15EE.htm

Per Capita Consumption (BPY): US - 28, China - 2


US imports over 60% of Petroleum (2004)

Iraq oil - the target for years By Ahmad Quni


Oil Reserves

Coal Reserves

US Coal

¹Prior to January 11, 2002, EIA averaged 12-month "forward" spot prices for several coal specifications; after that date, coal prices shown are for a relatively high-Btu coal selected in each region, for delivery in the "prompt" quarter. The "prompt quarter" is the next calendar quarter, with quarters shifting forward after the 15th of the month preceding each quarter's end.

Source: with permission, selected from listed prices in Platts Coal Outlook, "Weekly Price Survey."

Hydrogen Sources

- Renewables
- Fossil Fuels
- Nuclear

Renewable Energy Options

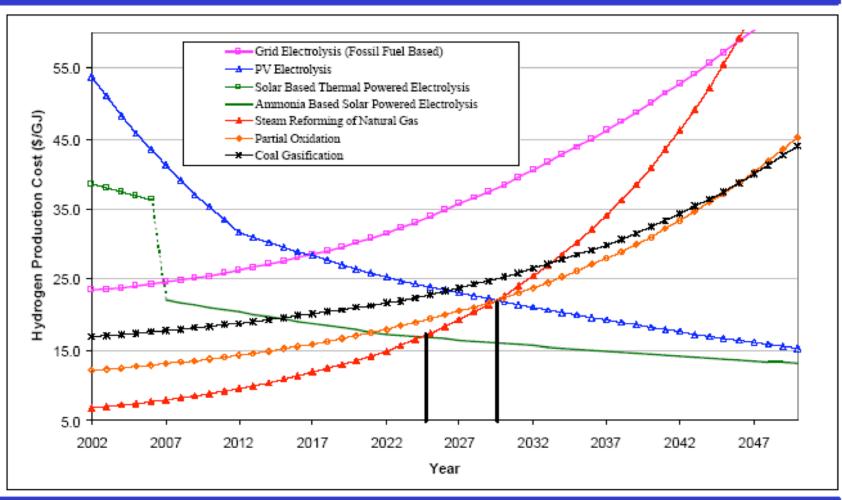
- Wind
- Solar
- Hydro
- OTEC
- Biomass

Enough Biomass?

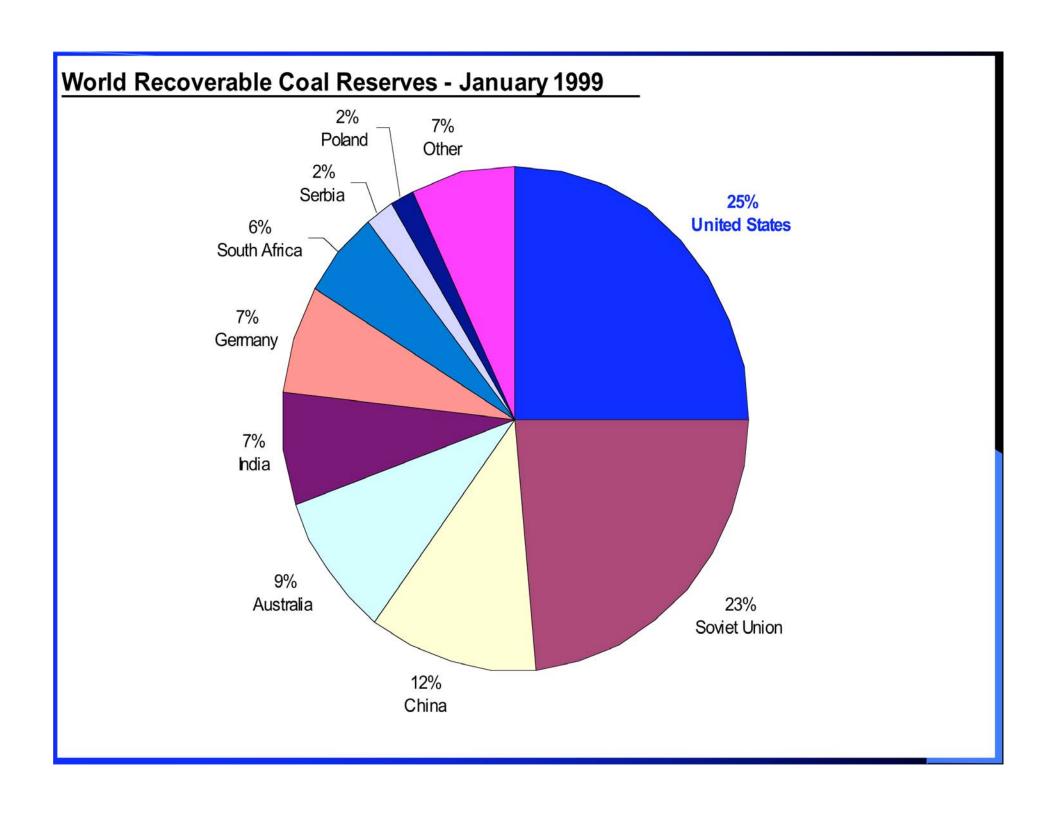
2002 Consumption	Quads
Petroleum	38.11
Natural Gas	23.37
Coal	22.18
Nuclear	8.15
Renewable	5.25
Corn potential (including stalk, 10 bil. bu.)	8.40

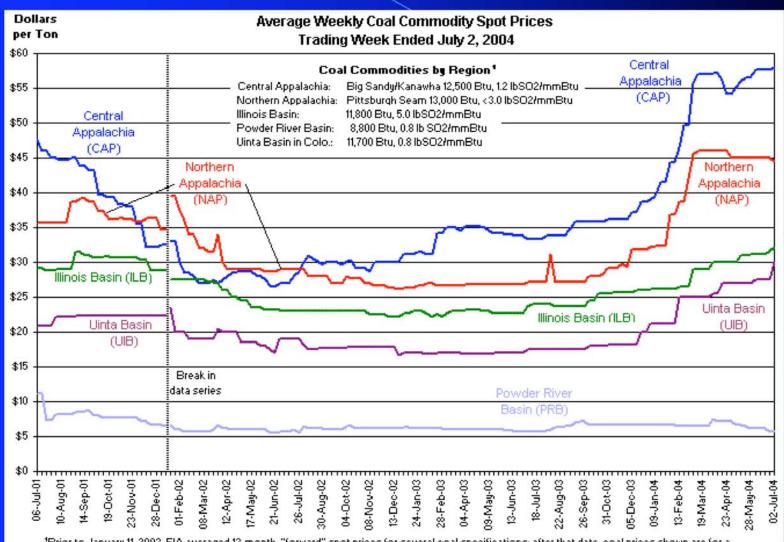
Solar, Wind, Biomass

Technology	Converter	Capacity	Maximum	Land per Year for:	
	Efficiency	Factor	Packing	km2/GW	m2/GWh
Flat-Plate PV	10-20%	20%	25-75%	10-50	5000 - 25,000
Wind	Low to 20%	20%	2-5%	100	140,000
Biomass	0.1% total		High	1000	500,000


Source:

http://www.nrel.gov/docs/fy04osti/35097.pdf


Scenario 1 Results



Fossil Fuel Hydrogen Sources

- Petroleum
- Natural Gas
- Coal

US Coal

¹Prior to January 11, 2002, EIA averaged 12-month "forward" spot prices for several coal specifications; after that date, coal prices shown are for a relatively high-Btu coal selected in each region, for delivery in the "prompt" quarter. The "prompt quarter" is the next calendar quarter, with quarters shifting forward after the 15th of the month preceding each quarter's end.

Source: with permission, selected from listed prices in Platts Coal Outlook, "Weekly Price Survey."

Dakota Gasification

Over 20 years of producing natural gas, ammonia and other valuable chemicals from US coal.

Al Lukes - \$4.50 Nat. Gas from new coal gasification plants.

Europe

The Homepage of the R&D Component of the European Commission Clean Coal Technology Programme

euro-cleancoal.net

Chemistry

From Coal

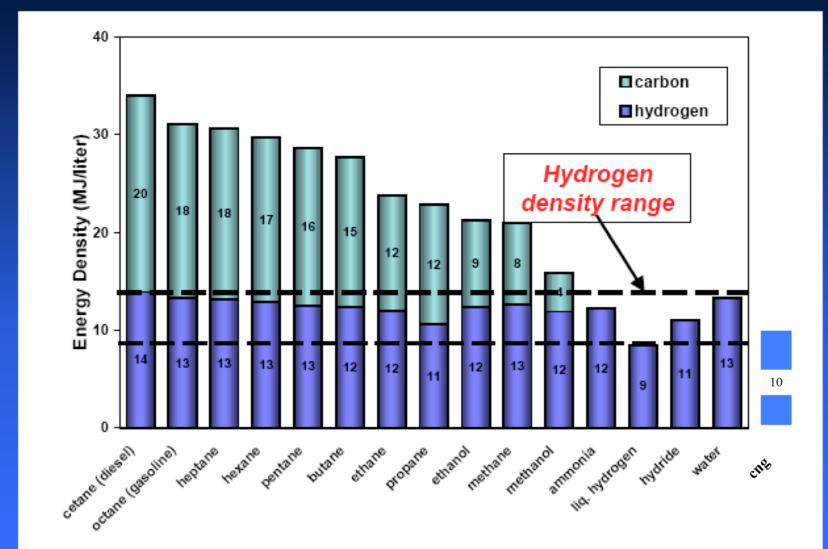
$$C + H2O$$
 ---- $CO + H2$

$$CO + H2O - CO2 + H2$$

or

N2 + 3H2 ---- 2NH3 (Ammonia)

From Natural Gas


$$CH4 + O2 ---- CO2 + 2H2$$

Performance

Hydrogen Carriers

- Liquefied Hydrogen (H₂) 100%
- Compressed Hydrogen (H₂) 100%
- Natural Gas (CH₄) 25.0%
- Ammonia (NH₃) 17.6%
- Ethanol (C₂H₆O) 13.0%
- Methanol (CH₄O) 12.5%

Energy densities (LHV) for fuels in liquid state

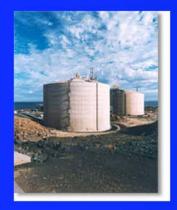
Freedom Car Targets w/ 2005 NH3 Comparison

Parameter	Units	2007	2010	2015	NH3 (2005)
Spec. Energy	kWh/kg	1.5	2	3	3.0
Energy Density	kWh/L	1.2	1.5	2.7	2.7
Storage Cost	\$/kWh	6	4	2	3.1
Fuel Cost \$/ga	al. Gas equiv	3	1.5	1.5	1.7*

*\$280/ton ammonia

Fuel Costs

June 2003 Chemical Market Reporter*


	\$/MMBtu
Ammonia - \$200/metric ton*	\$10.01
Gasoline - \$1.20/gallon	\$10.52
Methanol - \$0.79/gallon*	\$13.68
Ammonia - \$270/short ton	\$14.86
Ethanol - \$1.25/gallon* (\$2.70, 9/05)	\$16.44
Gasoline - \$2.00/gallon	\$17.54
• Wind - \$0.035/kwh x 2 (electrolyzer)	\$20.51
Gasoline - \$2.50/gallon	\$21.92
Ethanol - \$2.70/gallon (9/05)	\$35.51

Future Compatibility

Hydrogen + Nitrogen

Ammonia

Storage & Delivery - Pipeline, Barge, Truck, Rail

Stationary Power

Fertilizer

Transportation

Economic Impacts

Current (2003) Imports: ~ 13 million bpd

= \$114 billion/year @ \$24/bbl, \$228 billion @ \$48/bbl

2003 Gasoline Consumption – 8,756,000 bbl/day

 15.3×10^{15} Btu/year = 850 million ton/year ammonia

1250 new plants @ 650,000 ton/year each

\$562 billion investment @\$450 million/plant

375,000 new jobs

\$5 billion annual new tax revenue/year (employees only)

Delivery Infrastructure

Ammonia Pipeline

Anhydrous Application

Anhydrous ammonia expands into a gas as it is injected into the soil where it rapidly combines with soil moisture.

End Use Applications

- Spark-Ignition Internal-Combustion Engines (w/ethanol)
- Diesel Engines (w/biodiesel)
- Direct Ammonia Fuel Cells
- •Gas Turbines
- •Gas Burners

Health And Safety

US DOT Statistics 1993-2003

Chemical	#Incidents	Fatalities Rel. Freq.		
Gasoline	3936	82	5.3x	
LPG	915	9	2.5x	
Anhyd. Ammonia	1016	4		

Scapegoat?

Ammonia NH3

Ephedrine and Pseudoephedrine C₁₀H₁₅NO

Methamphetamine $C_{10}H_{15}N$

VOC's + NOx + O2 + Sunlight = ozone = smog+

NOx + H2O + ammonia = ammonium nitrate = smog-

If the NOx doesn't form ammonium nitrate it goes to ozone (worse)

Fossil fuels are the problem, not ammonia

Ammonia is actually used to clean up NOx emmissions at coal plants

Ammonia Toxicity Ratings

Correspondin NFPA Index		Descriptive Term	LD ₅₀ (wt/kg) single oral dose rates	LC ₅₀ (ppm) 4 hours inhalation rate
4	1	Extremely Toxic	< 1 mg	<10
3	2	Highly Toxic	1-50 mg	10-100
2	3	Moderately Toxic	50-500 mg	100-1000
1	4	Slightly Toxic	500-5000 mg	1000-10,000
0	5	Practically non-toxic	500-15,000 mg	10,000-100,000
	6	Relatively Harmless	> 15,000 mg	> 100,000
		Ammonia - NH ₃	$LD_{50} = 350$	$LC_{50} = 2000$

The NFPA rating for ammonia is 3 taking into account the physical stress of emergency people. The actual NFPA health ratings based solely on the actual LD_{50} and LC_{50} numbers would be 2 and 1 respectively. Since we are most concerned with inhalation risks, the NFPA rating based on actual test data for ammonia should be 1 or "slightly toxic".

NFPA Classifications

Substance	Health	Flammability	Reactivity
Ammonia	3 ?!	1	0
Gasoline	1	3	0
Benzene, Ethyl benzene	3	3	0
MTBE	1 ?!	3	0
Natural gas, Methane	1	4	0
Hydrogen	0	4	0
LPG	1	4	0
Methanol, Ethanol ?, Toluene, Hexane	2	3	0

NFPA ratings span from 0 to 4 (0 = no special hazards, 4 = severe hazards). Based on actual test data, the NFPA Health rating for ammonia should be 1 (as an inhalation risk). It is interesting to note that gasoline gets a Health Rating of 1, yet many of it's significant components have Health Ratings of 2 and 3.

Summary

- Ammonia Meets Most 2015 Freedom Car Targets Today
- Ammonia Has a Very Extensive, Worldwide Delivery and Storage Infrastructure Already in Place
- Only H2 and NH3 Have No Tailpipe Greenhouse Gas Emissions
- Only H2 and NH3 Can be Made From Electricity and Water (+air for NH3)
- Ammonia From Fossil Fuels Now
- Ammonia From Renewables in the Near Future
- Diesel and Spark-Ignition IC Engines Now
- Fuel Cells in the Future
- Ammonia Looks Very Good Now and in the Future
- Ammonia is Safer Than Gasoline and Hydrogen