

Overview

Community-Scale Renewable Energy Systems:

- Hybrid Wind System
- Biomass Gasification System
- Community Biogas System
- Renewable Energy / Green Office Building

Practical production systems with research and demonstration platforms

"Destination Renewable Energy Research & Demonstration Systems"

Why Renewable Energy?

- Environment Global Warming
- Economy Good Business / Peak Oil
- Energy Security Risk Management

Global Warming & Greenhouse Gases

Peak Oil

We have reached "Peak Oil".

 Two-thirds of the world's "easy oil" is used up!

Lets put this into context.

Wind to Ammonia Participants

University of Minnesota

- West Central Research & Outreach Center Morris
- University of Minnesota, Morris (UMM)
- Institute of Technology
- Initiative for Renewable Energy and the Environment (IREE)
- College of Food, Agriculture, and Natural Resource Sciences (CFANS)

Wind to Ammonia Participants

Industry & Public Partners

- Sebesta Blomberg and Associates
- Statoil Hydro (formerly Norsk Hydro)
- Xcel Energy
- State of Minnesota
- Minnesota Environmental Trust Fund
- National Renewable Energy Lab
- Others

Wind Turbine:

- 1. 1.65 MW Vestas V-82
- 2. Installed March 2005
- 3. Produces 5.4 mil kWh / yr
- 4. Energy first used for research
- 5. Excess sold via direct line to University of Minnesota, Morris
- 6. Provides campus with over 80% of electrical energy needs

Hybrid Wind System

Phase I – Hydrogen & Electrical Energy Production

- 1. Electrolyzer
- 2. Compressor
- 3. Hydrogen Storage
- 4. ICE Engine Generator
- 5. Grid Interconnection
- 6. Web Enabled SCADA

First Wind to Hydrogen System in Utsira, Norway

Hybrid Wind System

Phase II: Value Added Wind Energy & Bridge Technologies

- 1. Production of Anhydrous Ammonia
 - -Nitrogen fertilizer
 - -Refrigeration and other uses

A Cost-Effective Low-Emission Hydrogen-Powered Hybrid-Electric Vehicle.

- 2. Transportation Fuel
 - -Fleet vehicles
 - -Service vehicles
 - -Cars and pickups

Hybrid Wind System

Phase III: System Integration "Wind Energy Refinery"

- 1. Business / Commercial Modeling
- 2. Hydrogen and Ammonia Fuel Cells
- 3. Hydrogen Natural Gas Mixed Turbine (2-3 MW) and Boilers
- 4. Hydrogen or H2 and Natural Gas Pipeline System
- 5. Combined power generation, valued added products, energy storage, and natural gas displacement

Wind to Ammonia Drivers

- 1. Declining domestic ammonia production
- 2. Stranded wind resource due to low transmission capacity
- 3. Natural gas market drives ammonia production costs
- 4. High ammonia / nitrogen demand and robust infrastructure
- 5. Security for domestic food, feed, and bio-fuel production
- 6. Success of producer owned ethanol
- 7. Hydrogen economy bridge

Why Anhydrous Ammonia

- The largest use of ammonia is for nitrogen fertilizer (Midwest)
- Natural gas accounts for over 90% of the cost of producing ammonia (Energy Intense)
- Ammonia has made via electrolysis for ~ 100 years (Proven)
- Electrolysis and other electro-chemical processes will still take considerable energy to produce ammonia (Local Market)
- Will keep dollars local, provide large load centers in areas that have renewable energy resources, and perhaps provide value to the transmission system (10 to 100 MW)
- Provide opportunities to capture wind energy for other uses

Nitrogen Fertilizer Production

Natural Gas Market

Natural Gas Market

U. S. Natural Gas Supply by Source, 2003-2030

Natural Gas Market

Figure 37. World Natural Gas Reserves by Geographic Region as of January 1, 2006

Source: "Worldwide Look at Reserves and Production," Oil & Gas Journal, Vol. 103, No. 47 (December 19, 2005), pp. 24-25.

Electrical Energy Use in the United States

NASA

Stranded Wind Resource

MISO Queue May '00 to Nov '07

	Wind (MW)	Non-Wind	Total (MW)	
MN	25,477	7,855	33,332	
ND	7,928	3,950	11,878	
SD	17,052	4,503	21,555	

Midwest Independent System Operator (Nov 2007)

"New" MISO Queue

- Midwest Independent Systems Operators (MISO)
- New interconnection process as of Sept 08
 - Favors interconnection points closest to load
- Over 80,000 Megawatts in the Midwest "Queue".
- Only 8,800 MW in "fast track" study
- Vast areas with excellent wind resources left stranded – areas that continue to lose pop.

Excellent Wind Resource

High Demand for Ammonia

High Demand for Ammonia

& Excellent Wind Resource

Robust Ammonia Infrastructure

Security for Domestic Bio-Fuels

- 1. Corn requires high amounts of nitrogen fertilizer
- 2. Dramatic increase in corn ethanol production in U.S.
- 3. Ethanol provides secure, domestic source of transportation fuel
- 4. However, over 50 % of nitrogen fertilizer for corn is imported!
- 5. Wind to Ammonia Systems can protect the flank of the bio-fuels industry

Success of Producer-Owned Ethanol

- 1. Revitalized and rejuvenated rural economies
- 2. Business experience and models
- 3. Successful Policy (Minnesota Model)
 - -Local and Community Ownership
 - -Mandate for 10 % Ethanol in Gasoline
 - -State Production Incentive
 - -Blenders Credit

Hydrogen Economy Bridge

- 1. Established Market for NH3
- 2. Allows Renewable H2 Production in Quantity
- 3. Locally Owned Systems
- 4. Follows E-85 Model for Grass Roots Expansion
- 5. Stimulus for Other H2 Applications
- 6. Breaks "Chicken or Egg" Cycle

Ammonia Demand in Minnesota

Minnesota farmers applied approximately 954 million lbs N to the 2005 Corn Crop (~1.2 Billion lbs NH3) NASS, 2006

~7.2 million acres of corn ~1.1 billion bushels total produced

~Two gigawatts of nameplate wind energy is required to produce enough ammonia for Minnesota

NASS 2006 MN Ag Statistics

Renewable Ammonia Policy Options

- 5-20% renewable ammonia mandate (Sliding Scale?)
- Production incentive \$.05 to \$.15 / lb NH3 produced
- Blenders tax credit
- And / or equipment and operating grants

Estimated Cost Per Acre for 10% Renewable NH3 Mandate

	Acres of Corn (MN)	NH3 Cost / Ton	Renewable NH3 Cost / Ton	Total Retail Value	Cost of NH3 per Acre
No Policy	7.2 million	\$500 / ton	\$0	\$300 mil.	\$41.67
10 % Policy	7.2 million	\$500 / ton	\$1000 / ton	\$330 mil.	\$45.83

^{*2005} MN State average of 167 lbs of NH3 per acre or 137 lbs of N

Wind to Ammonia Business Models

- Farmers own the nitrogen fertilizer demand as well as the land in which the wind blows across
- Vertically-integrated, locally owned systems will allow for moderately priced nitrogen fertilizer over a long duration
- Allows for market penetration into hydrogen sector and electrical energy generation
- Possible integration with biomass systems may allow for urea production
- Dynamic model may allow for ammonia production in off-peak hours and electrical energy sales during peak hours

Wind to Ammonia Implications

- Opens a new market for an estimated 2 gigawatts of nameplate wind capacity within the state stimulating wind energy development across Minnesota and the Midwest.
- Diminishes the need for additional transmission capacity to accommodate wind energy.
- May enable utilities to manage the variable nature of wind energy and electrical demand.
- Provides substantial economic development opportunities for farmers and rural communities.

Wind to Ammonia Implications

- Decreases green house gas emissions by eliminating fossil fuels currently used in the process.
- Provides a secure, domestically produced nitrogen fertilizer source and protects a vital agriculture industry within the United States.
- Firmly establishes the Midwest as a world leader in renewable hydrogen production and wind energy.
- Creates a solid foundation from which to grow Midwest manufacturing companies and attract complimentary hydrogen related industries.

Wind to Ammonia Pilot System

- Modified Haber Bosch Process
- Wind energy will drive electrolysis of water
- Hydrogen formed via electrolysis will be combined with nitrogen from air
- H2 and N2 will be combined in a reactor and passed through a catalyst bed
- Controlled heat and pressure parameters
- NH3 stored and used on WCROC fields

Renewable Hydrogen Research and Demonstration

Engineering Challenges

- Some things are easier
 - Carbon monoxide and carbon dioxide kill the catalyst
 - Methane inhibits the reaction rate
 - Complete absence of these contaminants is a plus

Some things are harder

- Maintaining overall efficiency
 - Heat of reaction is a source of energy to offset energy of compression
 - Small scale may not justify heat recovery
- Intermittent wind/hydrogen supply
 - Do electrolyzers cycle with the wind?
 - If so, does the ammonia plant cycle too?
 - If not, how do we store unreacted hydrogen?

Economic Challenges

- Labor cost per unit
 - High volume plants have very low labor cost per unit
- Storage
 - Storing anhydrous is expensive and hazardous
 - Is 32% solution the answer?
- Capital intensity
 - How do we contain capital investment/unit

