Solid State Ammonia Synthesis

NHThree LLC

Jason C. Ganley John H. Holbrook Doug E. McKinley

Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007

Inside the Black Box: Steam Reforming + Haber-Bosch

 $3 \text{ CH}_4 + 6 \text{ H}_2\text{O} + 4 \text{ N}_2 \rightarrow 3 \text{ CO}_2 + 8 \text{ NH}_3$

Energy consumption ~33 MBtu (9500 kWh) per ton NH₃

Inside the Black Box: Steam Reforming + Haber-Bosch

 $3 \text{ CH}_4 + 6 \text{ H}_2\text{O} + 4 \text{ N}_2 \rightarrow 3 \text{ CO}_2 + 8 \text{ NH}_3$

Energy consumption ~33 MBtu (9500 kWh) per ton NH₃

Inside the Black Box: HB Plus Electrolysis

Energy consumption ~12,000 kWh per ton NH₃

Inside the Black Box: Solid State Ammonia Synthesis

Energy consumption 7000 - 8000 kWh per ton NH₃

SSAS in a Nutshell

- Solid-state electrochemical process
- Water (steam) decomposed at anode
- Hydrogen atoms adsorb, stripped of electrons
- Hydrogen conducts (as proton) through proton-conducting ceramic electrolyte
- Protons emerge at cathode, regain electrons, and react with adsorbed, dissociated nitrogen atoms to form NH₃
- Patent application February 2007

SSAS Features and Advantages

- Does not require expensive, energyintensive electrolyzers
- High pressures (e.g. for Haber-Bosch synthesis) are not required
- Co-production of oxygen gas
- Synthesis reactors in the form of multiple tube bundles in geometric arrangement
- Straightforward NH₃ capacity expansion by adding synthesis tube bundle modules

SSAS Primary Components

Current Work: Protonic Ceramic

Preferred compositions identified

- Good thermal stability, capable of thermal cycling
- High ionic conductivity
- Stability in humid or dry atmospheres
- Stable in reducing, neutral, or oxidizing conditions

Refinement of processing techniques

- Ceramic synthesis routes
 - -Solid state chemical reaction vs. autoingintion
 - -Sintering and densification, catalyst support
- Ceramic forming
 - -Bulk powder pressing
 - -Tape casting, spin coating

Current Work: Catalysis

 Maximize: ionic and electronic conductivity, surface area, catalytic action

Oxidizing atmosphere present

- Co-generation of oxygen gas
- Intermediate temperatures: less severe conditions

Reducing atmosphere present

Ammonia product is a strong reducing agent

-Protects stability of many catalyst types

-Converts metal oxides to high surface area metallic catalysts

Intermediate temperatures: helps prevent sintering of catalyst particles

Mass Production: Tubular Geometry

SSAS reactor module will have similar tube

and manifold arrangement

PCC Tubes in R&D Labs

PCC tube fabricated for LANL by TYK Corporation (Japan) by extrusion, used for tritium recovery.

Economic Comparison

Measure	Production Method		
	Natural Gas	Electrolyzer + H-B	SSAS
Energy required per ton of NH ₃	33 MBtu = 9700 kWh	~12,000 kWh (H2 production only)	7000-8000 kWh
Capital cost per ton/day NH ₃ capacity	~\$500,000	~\$750,000 (Cost dominated by electrolyzer)	<\$200,000
"Fuel" cost to produce 1 ton of NH ₃ at large scale [1]	Depends on location and NG cost	\$420 (3.5 ¢/kWh) \$240 (2 ¢/kWh)	\$245 (3.5 ¢/kWh) \$140 (2 ¢/kWh)
Cost of 1 ton NH ₃ at moderate to large scale [2]	Depends on location and NG cost	>\$600 (3.5 ¢/kWh) >\$400 (2 ¢/kWh)	~\$315 (3.5 ¢/kWh) ~\$210 (2 ¢/kWh)
Tons of CO ₂ emitted per ton of NH ₃ produced	1.8	-0-	-0-

[1] For NHThree's planned demonstration project, Douglas Co. WA will supply standard

2 ¢/kWh power from hydroelectric

[2] Using a capital recovery factor of 12% and purchased nitrogen at \$30 per ton of N₂

Green Ammonia – a Renewable Cycle

The "Sweet Spot" for SSAS

• Inexpensive electric power

- Stranded wind or geothermal
- Hydroelectric
- Nuclear
- Off-peak fossil energy in Midwest
- OTEC
- Reliable water supply, need not be pure
- 420 gallons H₂O/ton NH₃
- Inexpensive heat source to improve efficiency
 - Concentrated solar thermal
 - Nuclear