Small Scale Distributed Ammonia Production

Less than 100 tons per day

Contact: Doug Carpenter at Sustainable Fuels, Inc. dcarpenter21@cox.net Presented By: Bill Ayres at R3Sciences, LP www.r3sciences.com

Overview

- Nitrogen Generation
- Hydrogen Generation
- Hydrogen Purification
- Reaction Gas Blending
- Reaction Gas Storage
- Reaction Overview
- Reactor
- Ammonia Separation
- Residual Gas Stream
- FAQ

Nitrogen Generation

Nitrogen from Air (79% Nitrogen)

- Pressure Swing Adsorption (PSA)
 - Gas compression, adsorption on carbon media, depressurization, nitrogen desorption
 - Repeat until desired purity (>99.99%)
- Cryogenic Liquefaction
 - High Cost
 - High Volume
 - Very High Purity (>99.999%)
- LN₂ Delivery

Hydrogen Generation

 Traditional Catalytic Steam Reforming of Methane and Water-Gas Shift Reaction CH₄ + 2H₂O → CO₂ + 4H₂

Capture CO, for Urea Production

Chloralkali Process

2NaCl + $2H_2O \rightarrow Cl_2 + H_2 + 2NaOH$

Electrolysis of Water

 $2H_2O \rightarrow 2H_2 + O_2$

• Pyrolysis (Gasification) of Biomass $C_6H_{12}O_6 + O_2 + H_2O \rightarrow CO + CO_2 + H_2$

Hydrogen Purification

- High Purity Hydrogen Required to Prevent Catalyst Degradation
 - Low H_2O
 - Low Sulfur
 - Low CO₂ and CO

Traditional Chemical Methods

- Diethylene glycol water removal
- Methyldiethanolamine for CO₂
- ZnO, FeO remove H₂S chemically
- N-Formylmorpholine also for H₂S
- Palladium Membrane Separation
- Pressure Swing Adsorption

Reaction Gas Blending

 Low pressure hydrogen and nitrogen are blended using mass flow controllers then compressed to 3000 psi

Reaction Gas Storage

- Renewable Sources (Solar, Wind) Require Large Buffer Storage: for carryover when sun and wind are absent
 - Fixed Tanks
 - Tube Trailers
 - Pressurized to 3,000 psi

Reaction Overview

- High Pressure (10,000 psi)
- No Gas Recirculation Loop (Once through)
- 95% Conversion of Hydrogen

Reactor

- Catalyst Optimized for High Pressure
 - Catalyst is pre-reduced and sealed in reactor
- Internal Heat Exchanger
- Cooled by Low Pressure Steam
- Rapid Start-up and Stabilization
- Automated Control of Operation
- Remotely Monitored

Ammonia Separation

- Internal Heat Exchanger to Reduce Temperature of Product Gases
- Let-down Turbine Further Reduces Temperature and Pressure
- Refrigeration of Product Gases
 - Cryogenic cooling using LN₂
 - $LN_2 \rightarrow N_2$ (gas)
 - Electrical Refrigeration
- Ammonia Captured
 - 97% condensed and removed to liquid storage tank
 - 3% non-condensed

Residual Gas Stream

 $N_2 + H_2 \rightarrow NH_3 + N_2 + H_2$

- Unreacted Hydrogen (5% of feedstock)
- Non-condensed Ammonia (3% of product)
- Residual Nitrogen
- •Add Oxygen From Nitrogen Pressure Swing Adsorber
- Pressure is 200 psi

- How Much Does It Cost?
 - For a 5 Ton Per Day (TPD) Unit; Excluding Hydrogen Generation -\$500k
- How Soon Can I Get It?
 - System Delivery 18 months
- How Long Does It Take To Get Permits?
 - If "Bugs and Bunnies Report" is required up to 2 years
- Recent Projects
 - 5 lbs. (1 gallon) per day completed and demonstrated
 - 5 Tons/day under construction
 - 50 Tons/day permitting in process (Aurora Renewable Energy)