Small Scale Distributed Ammonia Production

Less than 100 tons per day

Contact:
Doug Carpenter at Sustainable Fuels, Inc.
dcarpenter21@cox.net

Presented By:
Bill Ayres at R3Sciences, LP
www.r3sciences.com
Overview

- Nitrogen Generation
- Hydrogen Generation
- Hydrogen Purification
- Reaction Gas Blending
- Reaction Gas Storage
- Reaction Overview
- Reactor
- Ammonia Separation
- Residual Gas Stream
- FAQ
Nitrogen Generation

- Nitrogen from Air (79% Nitrogen)
 - Pressure Swing Adsorption (PSA)
 - Gas compression, adsorption on carbon media, depressurization, nitrogen desorption
 - Repeat until desired purity (>99.99%)
 - Cryogenic Liquefaction
 - High Cost
 - High Volume
 - Very High Purity (>99.999%)
 - LN$_2$ Delivery
Hydrogen Generation

- Traditional Catalytic Steam Reforming of Methane and Water-Gas Shift Reaction
 \[\text{CH}_4 + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}_2 \]
- Capture \(\text{CO}_2 \) for Urea Production
- Chloralkali Process
 \[2\text{NaCl} + 2\text{H}_2\text{O} \rightarrow \text{Cl}_2 + \text{H}_2 + 2\text{NaOH} \]
- Electrolysis of Water
 \[2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]
- Pyrolysis (Gasification) of Biomass
 \[\text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{CO} + \text{CO}_2 + \text{H}_2 \]
Hydrogen Purification

• High Purity Hydrogen Required to Prevent Catalyst Degradation
 – Low H₂O
 – Low Sulfur
 – Low CO₂ and CO
• Traditional Chemical Methods
 – Diethylene glycol water removal
 – Methyldiethanolamine for CO₂
 – ZnO, FeO remove H₂S chemically
 – N-Formylmorpholine also for H₂S
• Palladium Membrane Separation
• Pressure Swing Adsorption
Reaction Gas Blending

- Low pressure hydrogen and nitrogen are blended using mass flow controllers then compressed to 3000 psi.
Renewable Sources (Solar, Wind) Require Large Buffer Storage: for carryover when sun and wind are absent

- Fixed Tanks
- Tube Trailers
- Pressurized to 3,000 psi
Reaction Overview

- High Pressure (10,000 psi)
- No Gas Recirculation Loop (Once through)
- 95% Conversion of Hydrogen
Reactor

• Catalyst Optimized for High Pressure
 – Catalyst is pre-reduced and sealed in reactor
• Internal Heat Exchanger
• Cooled by Low Pressure Steam
• Rapid Start-up and Stabilization
• Automated Control of Operation
• Remotely Monitored
Ammonia Separation

- Internal Heat Exchanger to Reduce Temperature of Product Gases
- Let-down Turbine Further Reduces Temperature and Pressure
- Refrigeration of Product Gases
 - Cryogenic cooling using LN₂
 LN₂ → N₂ (gas)
 - Electrical Refrigeration
- Ammonia Captured
 - 97% condensed and removed to liquid storage tank
 - 3% non-condensed
N₂ + H₂ → NH₃ + N₂ + H₂

• Unreacted Hydrogen (5% of feedstock)
• Non-condensed Ammonia (3% of product)
• Residual Nitrogen
• Add Oxygen From Nitrogen Pressure Swing Adsorber
• Pressure is 200 psi
FAQ

• How Much Does It Cost?
 – For a 5 Ton Per Day (TPD) Unit; Excluding Hydrogen Generation - $500k
• How Soon Can I Get It?
 – System Delivery - 18 months
• How Long Does It Take To Get Permits?
 – If “Bugs and Bunnies Report” is required - up to 2 years
• Recent Projects
 – 5 lbs. (1 gallon) per day – completed and demonstrated
 – 5 Tons/day - under construction
 – 50 Tons/day - permitting in process (Aurora Renewable Energy)