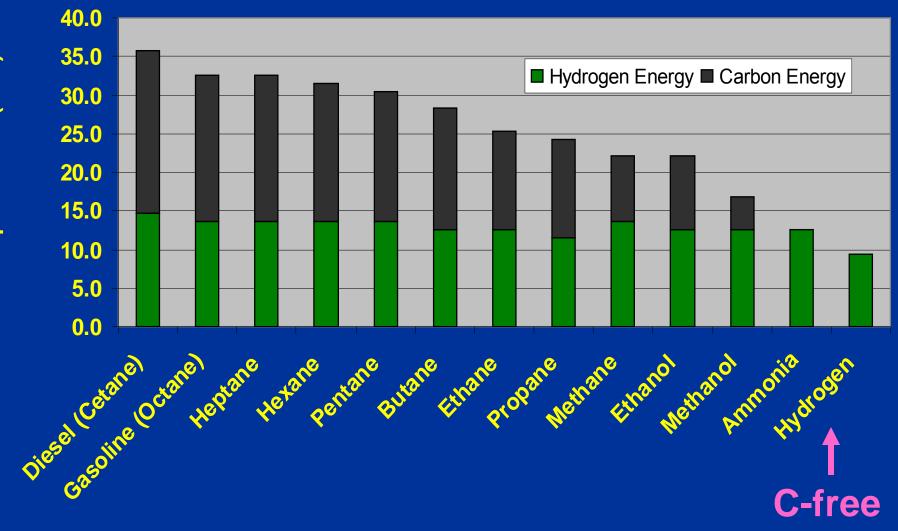
Comparing:Fuels For Energy Transmission, Storage, and Integration


Ammonia Fuel 1-2 October 2012, San Antonio

DERM

TRANTIC

Bill Leighty Director, The Leighty Foundation Principal, Alaska Applied Sciences Juneau, AK wleighty @earthlink.net 907-586-1426 206-719-5554 cell

Volumetric Energy Density of Fuels (Fuels in their Liquid State)

kWh per Gallon (LHV)

NH3 Fuel Association Website

Energy Content (LHV)		Octane Number	300 Mile Range - Tank Size (30 mpg gasoline equivalent)	500 km Range - Tank Size (12.75 km/litre gasoline equivalent)	Maximum Practicle Compression Ratio	
Bru/galler	MJ/liter		Gallons	Litres		
129,500	36.10	8 - 15	8.8	34.5	23:1	
118,300	32.98	25	9.6	37.8	23:1	
114,100	31.81	86 - 94	10.0	39.2	10:1	
84,300	23.50	120	13.5	53.1	17:1	
76,100	21.21	109	15,0	58.8	19:1	
56,800	15.83	109	20.1	78.7	19:1	
41,700	11.62	130	27.4	107.3	50:1	
41,000	11.43	120	27.8	109.1	17:1	
16,000	4.46	130	71.3	279.5	-	
6,500	1.81	130	175.5	688.1		
3,870	1.08	NA	98.3	385.2	NA	
	Bio/galloc 129,500 118,300 114,100 84,300 76,100 56,800 41,700 41,700 16,000 6,500	Btu/gallor M.//IIter 129,500 36.10 118,300 32.98 114,100 31.81 84,300 23.50 76,100 21.21 56,800 15.83 41,700 11.62 41,000 11.43 16,000 4.46 6,500 1.81	Bto/gallor M.//liter 129,500 36.10 8 - 15 118,300 32.98 25 114,100 31.81 86 - 94 84,300 23.50 120 76,100 21.21 109 56,800 15.83 109 41,700 11.62 130 41,000 11.43 120 16,000 4.46 130 6,500 1.81 130	Btd/gallorM.I/ItterGaltons129,50036.10B - 158.8118,30032.98259.6114,10031.8186 - 9410.084,30023.5012013.576,10021.2110915.056,80015.8310920.141,70011.6213027.441,00011.4312027.816,0004.4613071.36,5001.81130175.5	Id0 mpg gåsoline equivalent) (12.75 km/litre gasoline equivalent) Bto/gallor M.//liter Gallons Litres 129,500 36.10 8 - 15 8.8 34.5 118,300 32.98 25 9.6 37.8 114,100 31.81 86 - 94 10.0 39.2 84.300 23.50 120 13.5 53.1 76,100 21.21 109 15.0 58.8 56,800 15.83 109 20.1 78.7 41,700 11.62 130 27.4 107.3 41,000 11.43 120 27.8 109.1 16,000 4.46 130 71.3 279.5 6,500 1.81 130 175.5 688.1	

NH3 Fuel Association Website (reformatted)

				30 mpg	13 km / I	
				Tank Size	Tank size	ICE
	Energy	Energy		300 mile	500 km	Max
	Content	Content	Octane	Range	Range	Compress
	BTU / gal	MJ / liter	Number	Gallons	Liters	Ratio
Diesel	129,500	36.1	8 - 15	8.8	34.5	23
Biodiesel	118,300	32.98	25	9.6	37.8	23
Gasoline	114,100	31.81	86 - 94	10	39.2	10
LPG, LP, propane	84,300	23.5	120	13.5	53.1	17
Ethanol	76,100	21.21	109	15	58.8	19
Methanol	56,800	15.83	109	20.1	78.7	19
NH3	41,700	11.62	130	27.4	107.3	50
CNG (3,600 psi)	41,000	11.43	120	27.8	109.1	17
Hydrogen (GH2) - 700 bar	16,000	4.46	130	71.3	279.5	
Hydrogen (GH2) - 350 bar	6,500	1.81	130	175.5	688.1	
Lithium Ion Battery	3,870	1.08	NA	98.3	385.2	NA

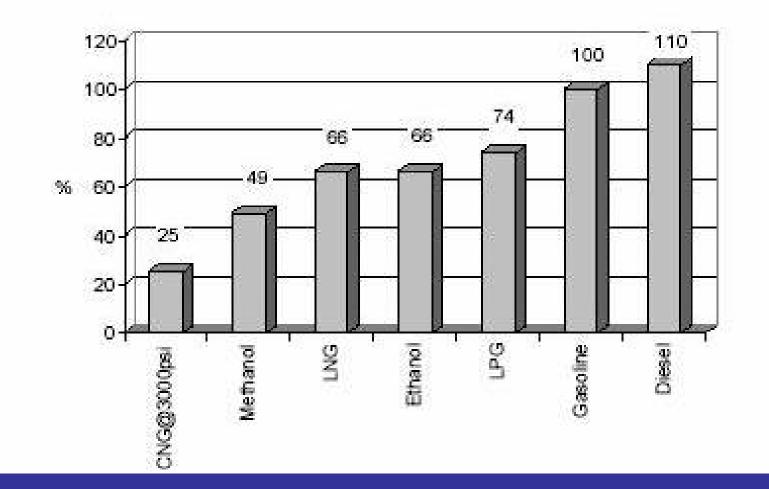
NH3 Fuel Association Website (reformatted)

				30 mpg	13 km / l	
				Tank Size	Tank size	ICE
	Energy	Energy		300 mile	500 km	Max
	Content	Content	Octane	Range	Range	Compress
	BTU / gal	MJ / liter	Number	Gallons	Liters	Ratio
Diesel	129,500	36.1	8 - 15	8.8	34.5	23
Biodiesel	118,300	32.98	25	9.6	37.8	23
Gasoline	114,100	31.81	86 - 94	10	39.2	10
LPG, LP, propane	84,300	23.5	120	13.5	53.1	17
Ethanol	76,100	21.21	109	15	58.8	19
Methanol	56,800	15.83	109	20.1	78.7	19
NH3	41,700	11.62	130	27.4	107.3	50
CNG (3,600 psi)	41,000	11.43	120	27.8	109.1	17
Hydrogen (GH2) - 700 bar	16,000	4.46	130	71.3	279.5	
Hydrogen (GH2) - 350 bar	6,500	1.81	130	175.5	688.1	
Lithium Ion Battery	3,870	1.08	NA	98.3	385.2	NA
Uranium, Plutonium, Thorium						
Deuterium, Tritium						
Electricity						

NH3 Fuel Association Website (All Energy)

				30 mpg	13 km / I	
				Tank Size	Tank size	ICE
	Energy	Energy		300 mile	500 km	Max
	Content	Content	Octane	Range	Range	Compress
	BTU / gal	MJ / liter	Number	Gallons	Liters	Ratio
Diesel	129,500	36.1	8 - 15	8.8	34.5	23
Biodiesel	118,300	32.98	25	9.6	37.8	23
Gasoline	114,100	31.81	86 - 94	10	39.2	10
LPG, LP, propane	84,300	23.5	120	13.5	53.1	17
Ethanol	76,100	21.21	109	15	58.8	19
Methanol	56,800	15.83	109	20.1	78.7	19
NH3	41,700	11.62	130	27.4	107.3	50
CNG (3,600 psi)	41,000	11.43	120	27.8	109.1	17
Hydrogen (GH2) - 700 bar	16,000	4.46	130	71.3	279.5	
Hydrogen (GH2) - 350 bar	6,500	1.81	130	175.5	688.1	
Lithium Ion Battery	3,870	1.08	NA	98.3	385.2	NA
Uranium, Plutonium, Thorium						
Deuterium, Tritium						
Other Petrol Fuels						
Coal						
Electricity						

NH3 Fuel Association Website (All Energy, More Properties)


				30 mpg	13 km / I									
				Tank Size	Tank size	ICE								
	Energy	Energy		300 mile	500 km	Мах					H2O	CO2	Buoy	Storage
	Content	Content	Octane	Range	Range		GHG	Nox	H:C ratio	рН	Soluble	Emiss	in air	effic'y
	BTU / gal	MJ / liter	Number	Gallons	Liters	Ratio								
Diesel	129,500	36.1	8 - 15	8.8										
Biodiesel	118,300	32.98	25	9.6	37.8	23								
Gasoline	114,100	31.81	86 - 94	10										
LPG, LP, propane	84,300	23.5	120	13.5	53.1	17								
Ethanol	76,100	21.21	109	15	58.8	19								
Methanol	56,800	15.83	109	20.1	78.7	19								
NH3	41,700	11.62	130	27.4	107.3	50								
CNG (3,600 psi)	41,000	11.43	120	27.8	109.1	17								
Hydrogen (GH2) - 700 bar	16,000	4.46	130	71.3	279.5									1
Hydrogen (GH2) - 350 bar	6,500	1.81	130	175.5	688.1									
Lithium Ion Battery	3,870	1.08	NA	98.3	385.2	NA								
Uranium, Plutonium, Thorium														
Deuterium, Tritium														1
Other Petrol Fuels														
Coal														
Electricity														

Compressed fuel tank costs

- Dynetek
- Quantum
- Lincoln
- Toyota
- Baytech Landi-Renzo, Torrance, CA

FUEL	Mas	s Energy De	ensity	Volumetric Energy Density:
Higher Heating Values (HHV)	MJ/kg	BTU / Ib.	BTU / gal.	Percent of Diesel
Diesel, low sulfur	45.600	19,594	138,490	100.0
Gasoline, conventional	46.500	20,007	124,340	89.8
Reformulated Gasoline (RFG)	45.400	19,530	121,848	88.0
Propane	50.200	21,597	91,420	66.0
Liquefied Petroleum Gas	50.200	21,561	91,410	66.0
Ethanol	29.800	12,832	84,530	61.0
Methanol	22.900	9,838	65,200	45.1
Ammonia, NH3 (75% H2)	24.644	10,600	60,282	43.5
Lithium Ion Battery	0.445	940	4134	2.99
Hydrogen, liquid	139.000	60,619	35,815	25.9
Hydrogen, gas, STP	139.000	59,816	42	<0.001

Source: Carl E. Schoder, "Our Carbon Free Energy Future", Aug 12

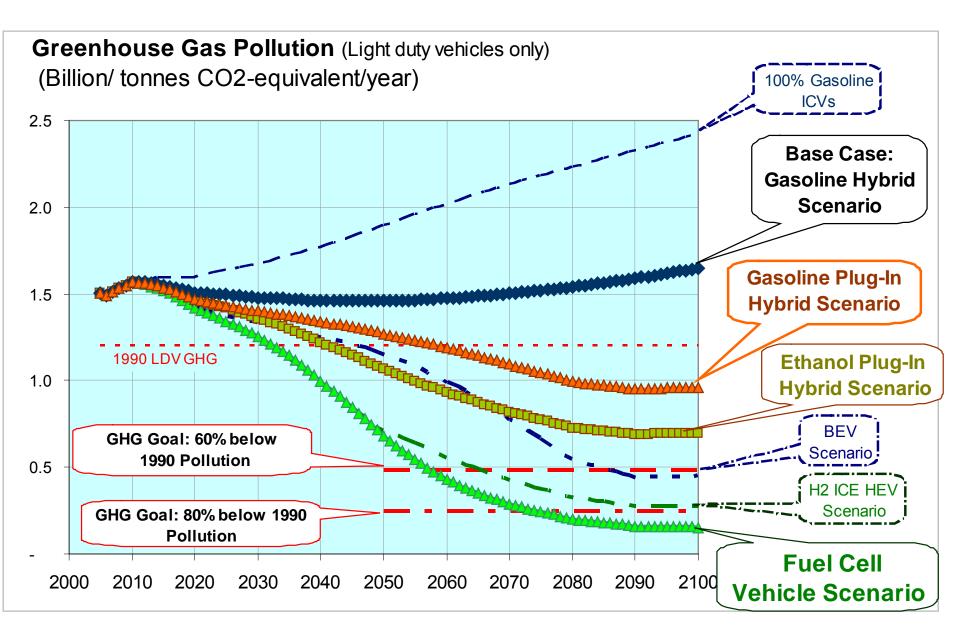
Volumetric Fuel Energy versus Gasoline

	CNG	Methanol	LNG	Ethanol	Propane	Gasoline	Diesel
Formula	CH4	C30H	CH4	C2H50H	C3H8	C8H16	C12H26
Research Octane #	130	112	130	111	112	91-98	N/A
Motor Octane #	130	91	130	92	97	82-90	
Cetane #	-10	3	-10	8	5-10	8-14	40-60
Boiling Point	-259/-162	N/A	-259/-162	N/A	-44/-42	(81-464)/ (27-240)	N/A
Energy Content (volume) (BTU/ft ^e) / (kJ/L)	213,300/ 7,875	425,000/ 15,688	569,200/ 21,013	570,000/ 21,027	637,500/ 25,535	862,100/ 31,825	950,400/ 35,082
Energy vs Gasoline %	25	49	66	66	74	100	110
Stoich A/F Ratio (mass)	17.3	6.5	17.3	9.0	15.7	14.7	15.0
Autoignition Temperature °F/°C	842/450	N/A	842/450	N/A	1,004/540	428/220	437/225
Peak Flame Temperature °F/°C	3,254/ 1,790	N/A	3,254/ 1,790	N/A	3,614/ 1,990	3,591/ 1,977	3,729/ 2,054
Flammability Lower Limit (volume %)	5.3	4.0	N/A	N/A	2.1	1.4	N/A
Flammability Upper Limit (volume %)	15.0	75.0	N/A	N/A	10.4	7.6	N/A

Context: Fuel Definitions

Attributes:

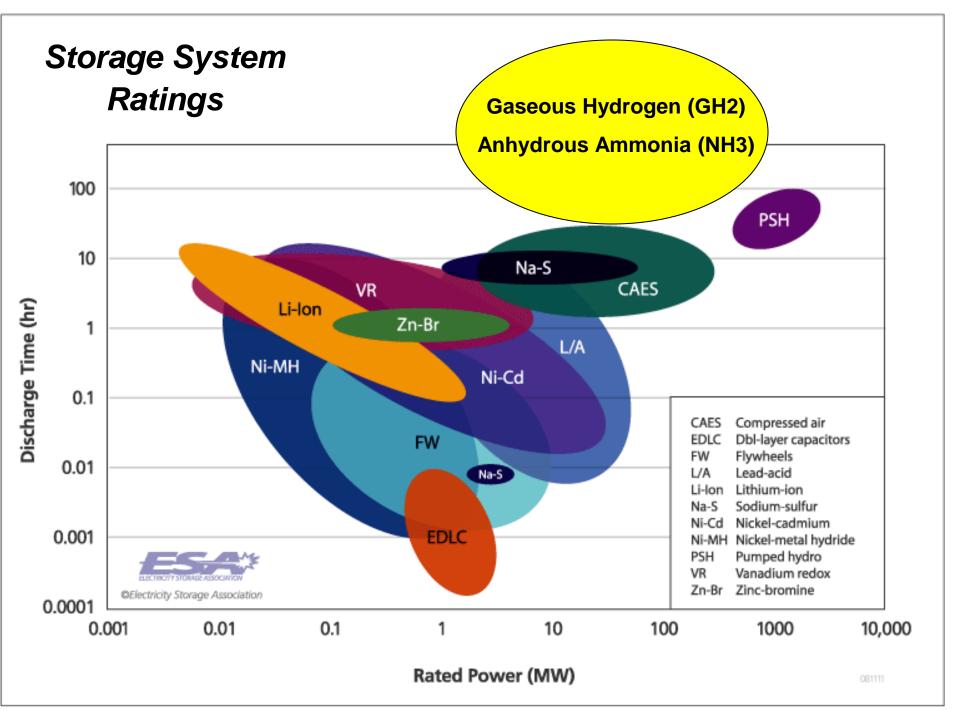
- Transportable
- Energy storage
- Convertible (energy \rightarrow exergy)
- Safe, convenient, economical
- USA Fed designation

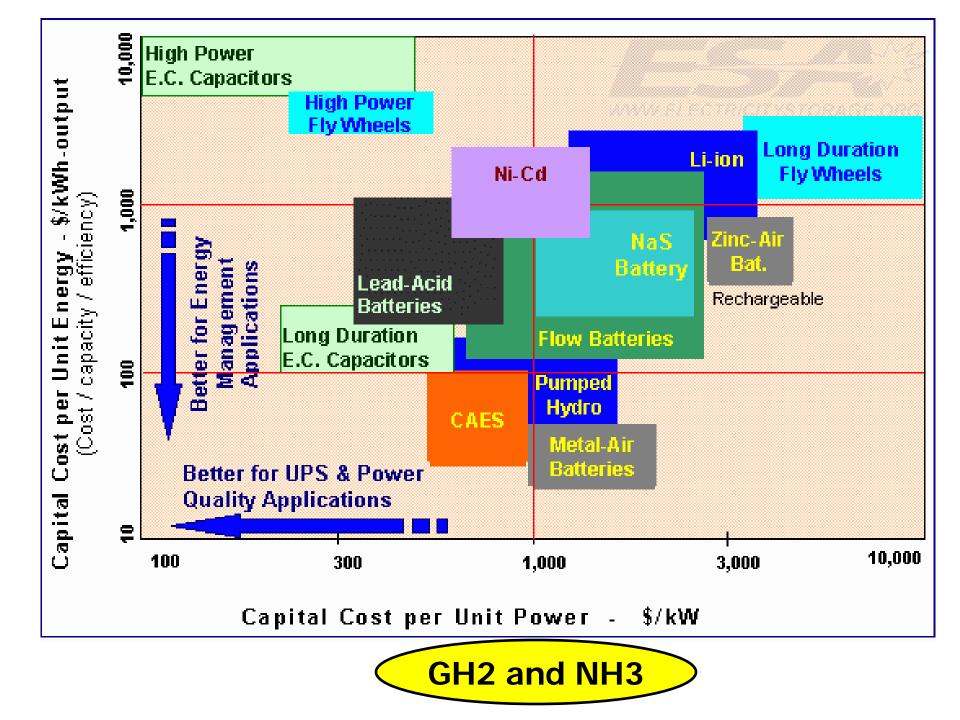

Electricity ?

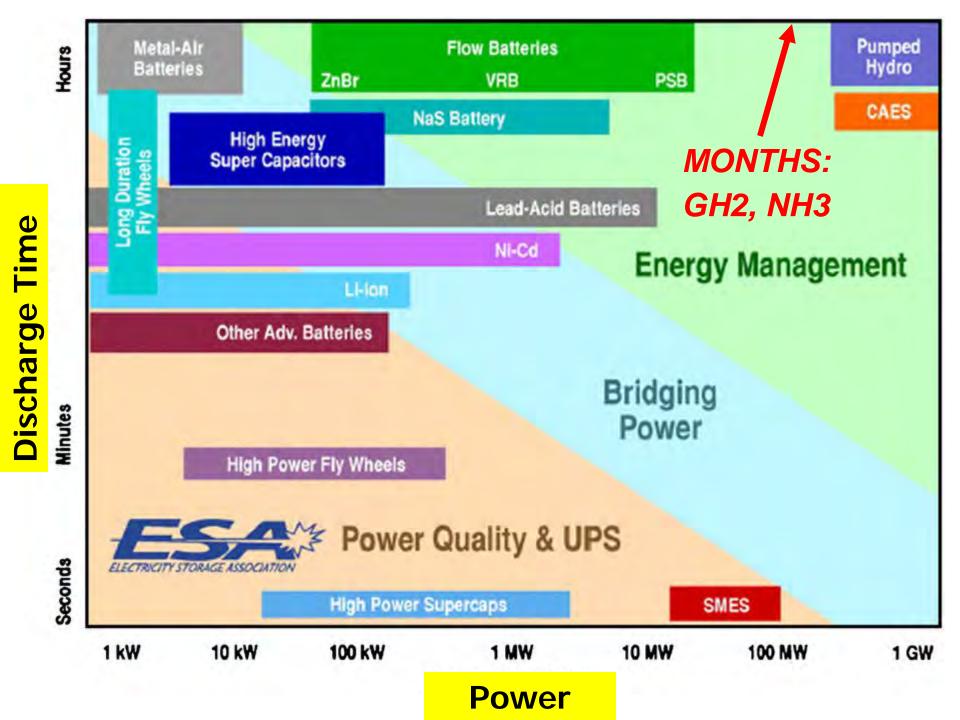
- Flow of electrons
- 100% exergy
- No storage
- Real-time
- "Smart Grid" symptom

Phyllis Cuttino Pew Environment

" Electrification of transportation is the only way to get off foreign oil "

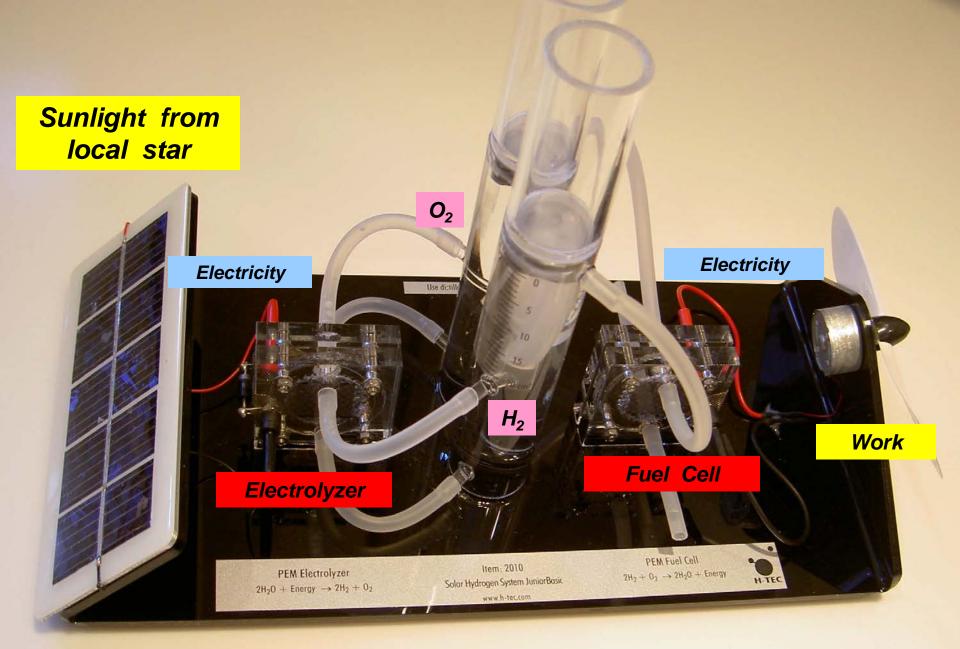

Context: Fuel Definitions

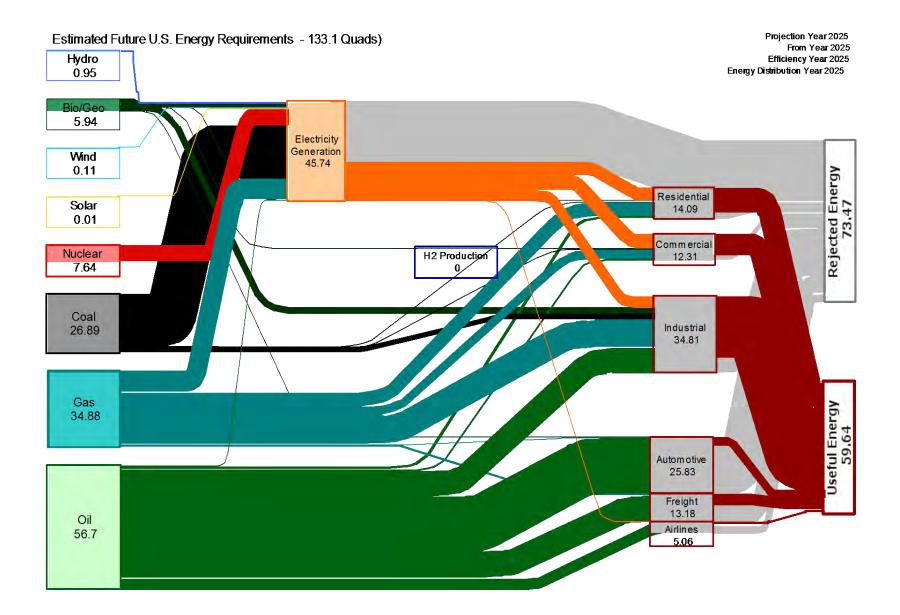

- A material consumed to produce energy, especially:


 a. Burned to produce heat or electricity
 b. Fissionable or fusible material used in a nuclear reactor
 c. Nutritive, food metabolized by a living organism
- 2. A substance that produces useful energy when it undergoes a chemical or nuclear reaction: burning, combustion, oxidation or reduction, metabolism.
- 3. Some radioactive substances:
 - Uranium, plutonium, thorium via fission
 - Deuterium and tritium via fusion
- 4. USA Fed designation
- 5. Electricity? No

Energy Storage System Characteristics Hydrogen and Ammonia off the charts

- Storage capacity (Mwh, scf, nM3, Mt, gallons)
- Power (MW, scfm) In / Out rate
- Costs
 - Capital
 - **O&M**
 - Conversion losses
- Efficiency
- Response time
- Durability (cycling capacity)
- Reliability
- Autonomy
- Self-discharge
- Depth of discharge
- Adaptation to the generating source
- Mass and volume densities of energy
- Monitoring and control equipment
- Operational constraints
- Feasibility
- Environmental




Context: Complete energy systems

- Photons + moving molecules \rightarrow energy services
- Extraction: Non-renewable
 - Fossil
 - Nuclear
- Production: Renewable generation, conversion
- Transmission
- Storage
- Supply integration
- Markets, niches

Solar Hydrogen Energy System

EIA estimated 2025 energy use

Context: Why Ammonia ? Fertilizer <u>and</u> Fuel

Only liquid fuel embracing:

Carbon-free: clean burn or conversion; no CO₂ Excellent hydrogen carrier Easily "cracked" to H₂ Reasonably high energy density Energy cycle inherently pollution free Potentially all RE-source: elec + water + Nitrogen Cost competitive with hydrocarbon fuels? Decades of global use, infrastructure Practical to handle, store, and transport End-use in ICE, Combustion Turbine, fuel cell Safety: self-odorizing; safety regs; hazard

Markets: Supply, Demand, Price

- Supply Push
- Demand Pull
- Price
 - Competition
 - Substitutes
 - Volume
 - Condition changes

Market: Transportation

• Land

- Truck
- Rail
- Personal vehicle
- Military
- Air
- Marine
 - Pleasure, utility
 - Commercial
 - Shipping
 - Military: USCG, Navy

Market: Transportation

• Land, Marine

- Liquid HC's
- CNG, LNG
- -LPG
- Hydrogen: GH2, LH2
- Other: Al-Ga, Zinc
- Air
 - Liquid HC's
 - LH2

Compressed Natural Gas (CNG) Fueling: ~ 3,000 psi

Market: Ag + Construction + Industrial

- Liquid HC's
- CNG, LNG
- LPG
- Hydrogen: GH2, LH2
- Other: Al-Ga, Zinc

John Deere "LP" tractor

Market: Combined Heat and Power (CHP)

- Firm, quality "power"
 - Elec grid backup
 - Elec grid replace
 - Sub-cycle response
- 80% + fuel energy recovery
- Stationary, on-site
 - Genset (ICE, CT, Fuelcell)
 - Byproduct heat (HI, LO temp)
 - Heat and cool
 - Process

Fuels

- Natural gas
- Liquid HC's
- Ammonia
- Nuclear SMR

(pipeline)(pipeline and / or tank)(pipeline and / or tank)(small modular reactor)

Market: Combined Heat and Power (CHP)

- Firm, quality "power"
 - Elec grid backup
 - Elec grid replace
 - Sub-cycle response
- 80% + fuel energy recovery
- Stationary, on-site
 - Genset (ICE, CT, Fuelcell)
 - Byproduct heat (HI, LO temp)
 - Heat and cool
 - Process

Fuels

- Natural gas
- Liquid HC's
- Ammonia
- Nuclear SMR

(pipeline)(pipeline and / or tank)(pipeline and / or tank)(small modular reactor)

• Air

- Scale
 - Major Base
 - Forward Base
 - Ship
 - Aircraft
 - Mini, Micro 1 W \rightarrow 1 kW

Market: RE Systems "Big 3"

(RE = Renewable Energy)

- 1. Gathering and Transmission
- 2. Storage
 - Firming
 - Seasonal, annual
 - Dispatchable
 - Cure "intermittent"
- 3. Supply Integration
 - Extant energy systems
 - Cure "intermittent"

Market: Fertilizer

• N:

- Embodied energy
- "Corn ethanol is recycled natural gas"
- NH3 and products: Urea, DAP, AN, other

• K, P

- Embodied energy
- Enables solar harvest via photosynthesis
- Trace minerals
 - Enables solar harvest via photosynthesis

Market: Chemicals + Explosives

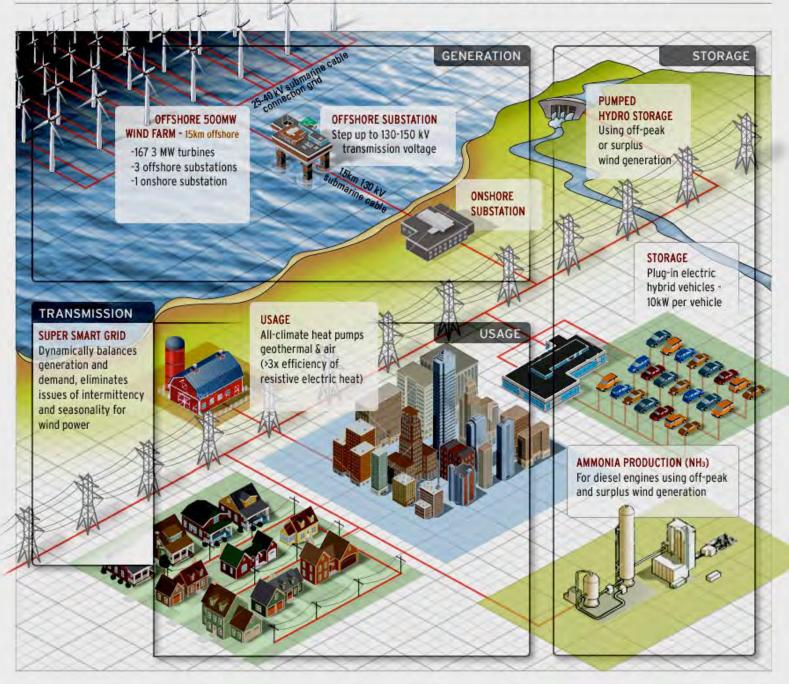
- Feedstock
- Explosives

Context: Markets - Where NH3 Compete ?

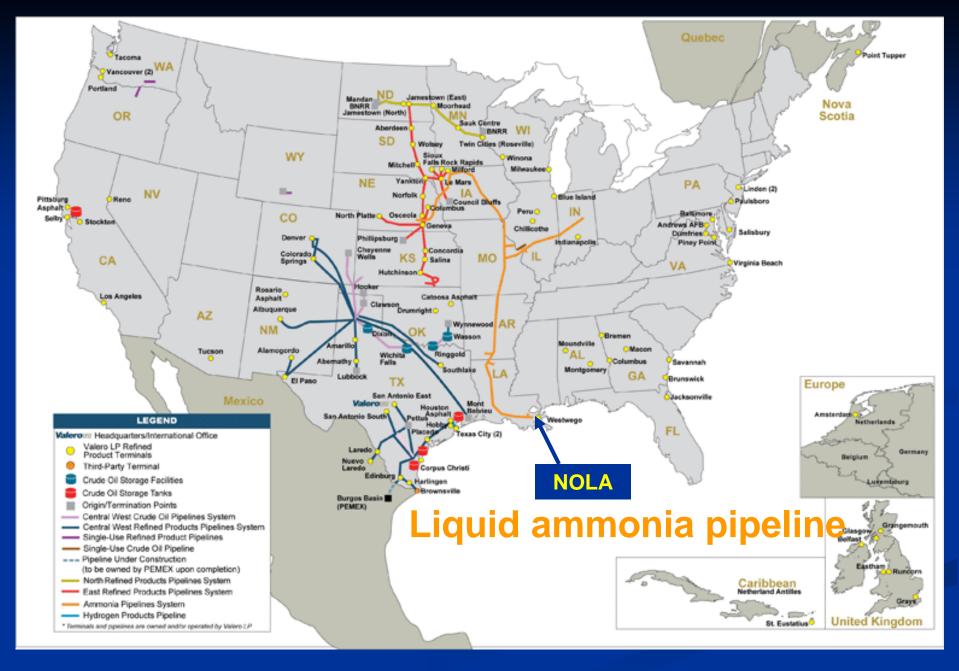
- Transportation
- Combined Heat and Power (CHP)
- Ag + Construction + Industrial
- Military
- Complete RE systems
- Fertilizer
- Chemicals + Explosives

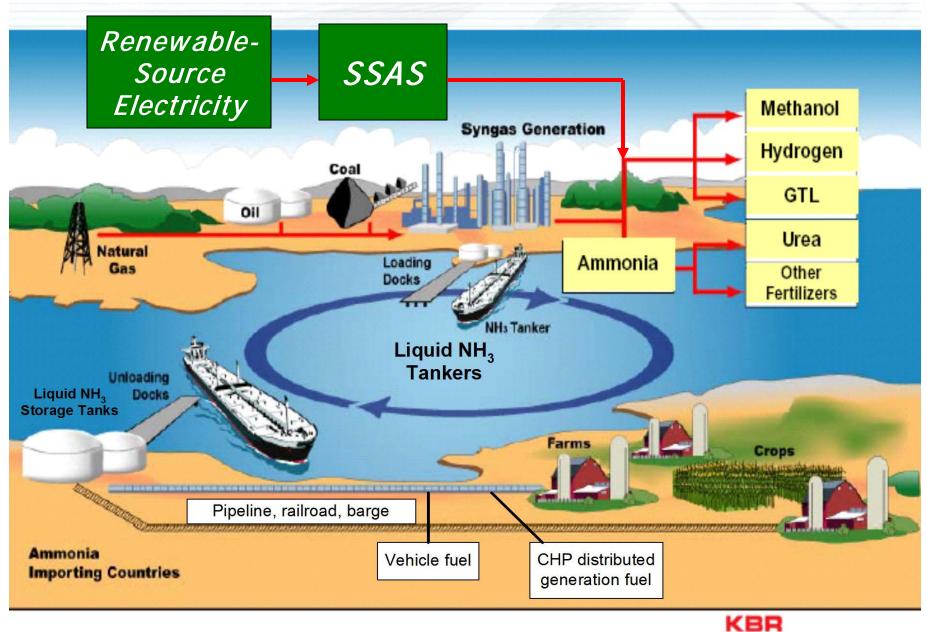
Fuel, fertilizer, feedstock ? Distributed, centralized, networked ? Determines salient "fuel" properties

An	Ammonia Demand		From C.E. S	choder Aug '12
Data for two representative areas	Worldwide, IEA (6)		USA, EIA (7)	
Type of Energy Demand,	Volumetric demand	Gravimetric demand	Volumetric demand	Gravimetric demand
Energy Demand units-→	Cubic meters NH3 per day	Mtonnes NH3 per day	Cubic meters NH3 per day	Mtonnes NH3 per day
NH3 energy demand per day, using NH3 to replace fossil fuels only)	90,711,825	61,856,394	28,437,910	19,391,811
Annual (MMtonnes) (Million metric tons)				
Assuming Solid State Ammonia Synthesis				
Air Separation Unit input, air	95,519,027	65,134,424	29,944,954	20,419,464
Air Separation Unit output, nitrogen	74,585,077	50,859,564	23,382,218	15,944,334
Air Separation Unit output, oxygen	20,933,950	14,274,860	6,562,736	4,475,130
Annual (MMtonnes) (Million metric tons)				
SSAS input, water	59,744,604	40,739,845	18,729,770	12,771,830
SSAS input, nitrogen	74,585,077	50,859,564	23,382,218	15,944,334
Total inputs	134,329,681	91,599,409	42,111,988	28,716,165
SSAS output, NH ₃ per day (fossil fuel replacement only)	90,711,825	61,856,394	28,437,910	19,391,811
SSAS output, oxygen	43,617,856	29,743,016	13,674,079	9,324,354
Total outputs	134,329,681	91,599,409	42,111,988	28,716,165


Complete energy systems

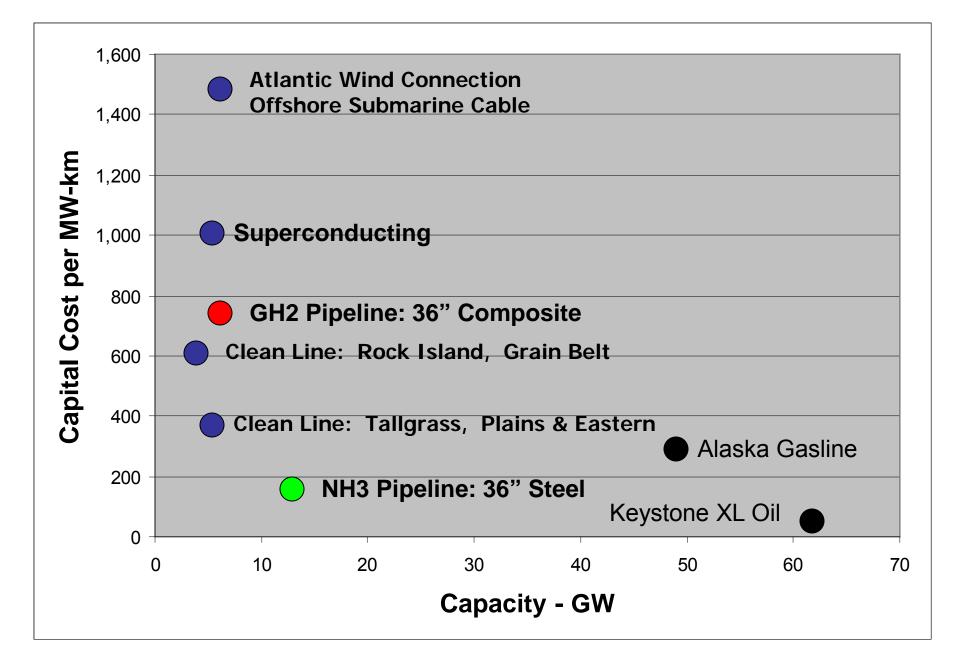
- Photons + moving molecules \rightarrow energy services
- Extraction: Non-renewable
 - Fossil
 - Nuclear
- Production: Renewable generation, conversion
- Transmission
- Storage
- Supply integration
- Markets, niches


NH₃ Ag Fertilizer Tanks, Wind Generators, NW Iowa


Energy as a Complete System: Generation, Usage, Storage, Transmission

NH3 Storage

Valero LP Operations



Energy and Chemicals

The NATURALHY approach: EC, R+D NATURALHY H_2 NG Pure H₂ **NATURALHY:** Breaks "chicken-egg" dilemma Bridge to sustainable future

Prepared by O. Florisson Gasunie

25 ft Pipeline ROW:

1.38.31

36" Gaseous Hydrogen

600 ft ROW

- 24" Liquid Ammonia
- 36" Superconductor (SC)

Out of Sight, Out of Harm's Way

5,000 MW alternatives: HVAC vs HVDC superconductor

The Atlantic Wind Connection transmission backbone would connect 6,000 MW of wind turbine capacity, built on the broad, windy spaces of the mid-Atlantic continental shelf, to population centers and transmission nodes on land.

1000 10-1

Hydrogen and Ammonia Fuels

- Solve electricity's RE problems:
 - Transmission
 - Firming storage
 - Grid integration: time-varying output
- Carbon-free
- Underground pipelines
- Low-cost storage: < \$ 1.00 / kWh capital
 - Pipelines
 - GH2 salt caverns
 - NH3 tanks

Sec'y Chu: reconsidering hydrogen (WREF)

Annual Fresh Water for Energy • USA today • All energy

- 17,000 billion liters
 - "Withdrawn"
 - "Consumed"
 - Include all NG "fracking" ?
- If all via GH2 + NH3 feedstock:
 - Dissociated, disintegrated: $H_2O \rightarrow H_2 + O_2$
 - 900 billion liters

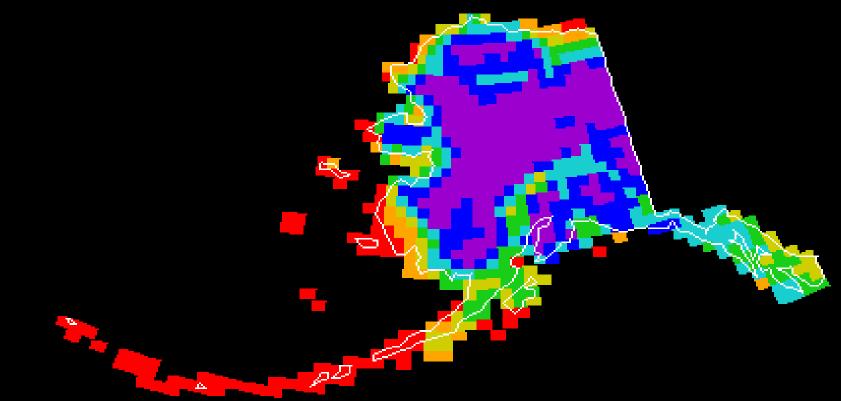
" There's a better way to do it... Find it "

Comparing:Fuels For Energy Transmission, Storage, and Integration

Ammonia Fuel 1-2 October 2012, San Antonio

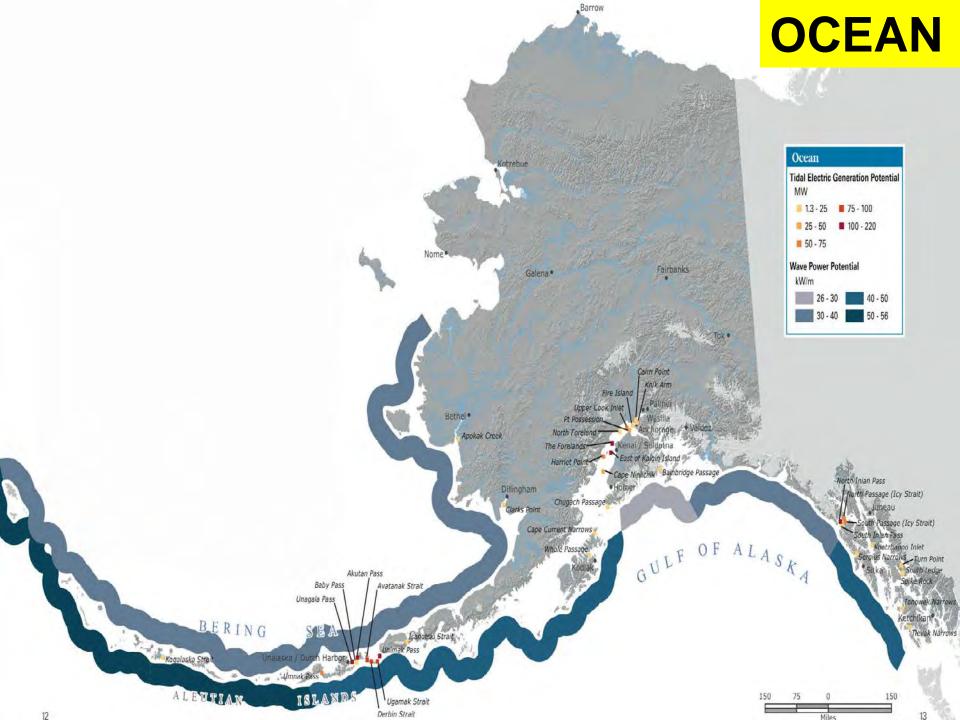

DERM

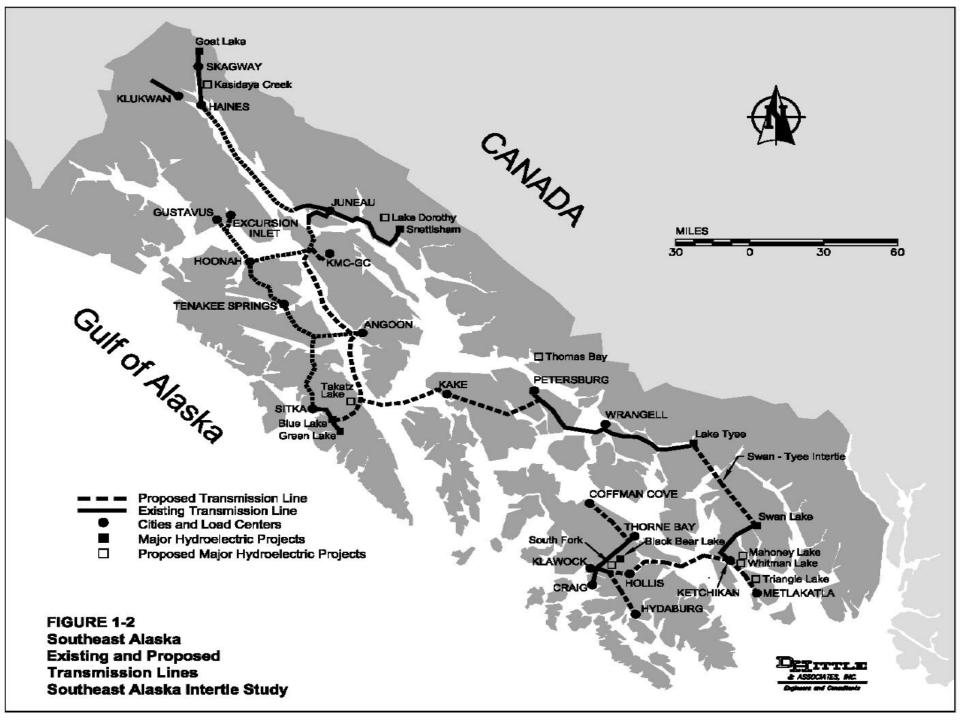
TRANTIC


Bill Leighty Director, The Leighty Foundation Principal, Alaska Applied Sciences Juneau, AK wleighty @earthlink.net 907-586-1426 206-719-5554 cell Solid State Ammonia Synthesis Pilot Plant (SSAS-PP) Demonstration System or Renewable Energy (RE) Firming Storage, Transmission, and Export

> Bill Leighty, Principal Alaska Applied Sciences, Inc. Box 20993, Juneau, AK 99802 wleighty@earthlink.net 907-586-1426 206-719-5554 cell

Wind Power Class




e 🗢

Power Class

Speed Power Density

- 2 3 4 6 7
- 0.0-5.6m/s >8.8m/s
- 0-200W/m2 5.6-6.4m/s 200-300W/m2 6.4-7.0m/s 300-400W/m2 7.0-7.5m/s 400-500W/m2 7.5-8.0m/s 500-600W/m2 8.0-8.8m/s 500-800W/m2 >800W/m2

AC-DC DC-AC Converter Stations

Superconducting (SC) electric line would leave TAPS at Fairbanks, follow Alaska Railroad to Anchorage

Opportunity: Alaska Applications

- 1. Village energy "independence": degree
 - a. Internal, external energy economies
 - b. Diverse renewable sources
 - c. Low-cost tank storage
 - d. CHP, transportation fuels
- 2. Firming storage: annual scale
 - a. Susitna hydro
 - b. Other
- 3. Export large, diverse, stranded renewables
 - a. Cryo tankers: global trade
 - b. "Green" NH3 premium? C-tax required?
 - c. SE AK "Cluster Industry"
 - d. Aleutians cargo ship fueling
- 4. Military fuel: ground, marine
 - a. USCG, Navy
 - b. Other services
 - c. DOD Assistant Secretary Sharon Burke visit 3-7 Aug 12

1. Decrease Cash OUT: Village "Energy Independence" via RE Generation + Storage

- What's Annual Average RE Cost of Energy (COE) ?
- Competitive ?
- What degree of "energy independence" ?
- Is SSAS required ?

2. Increase Cash IN: Export AK GW-scale RE as "Green" Ammonia

Can RE compete with "brown" ?

- What would C-tax need to be ?
- What would global NG price
 need to be?

Project Fundamentals

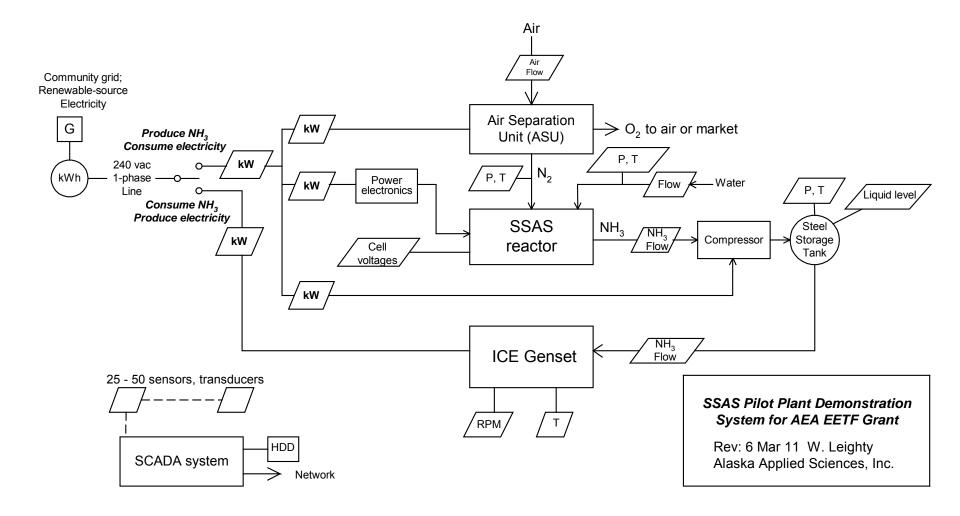
- 1. Does SSAS system "work" ?
- 2. Competitive with EHB ?
- 3. Useful in Alaska ?

SSAS Pilot Plant Budget

EETF via AEA\$ 750 KNHThree LLC in-kind\$ 100 KWind2Green (W2G) in-kind\$ 100 KAASI in-kind\$ 50 KTOTAL\$ 1 M

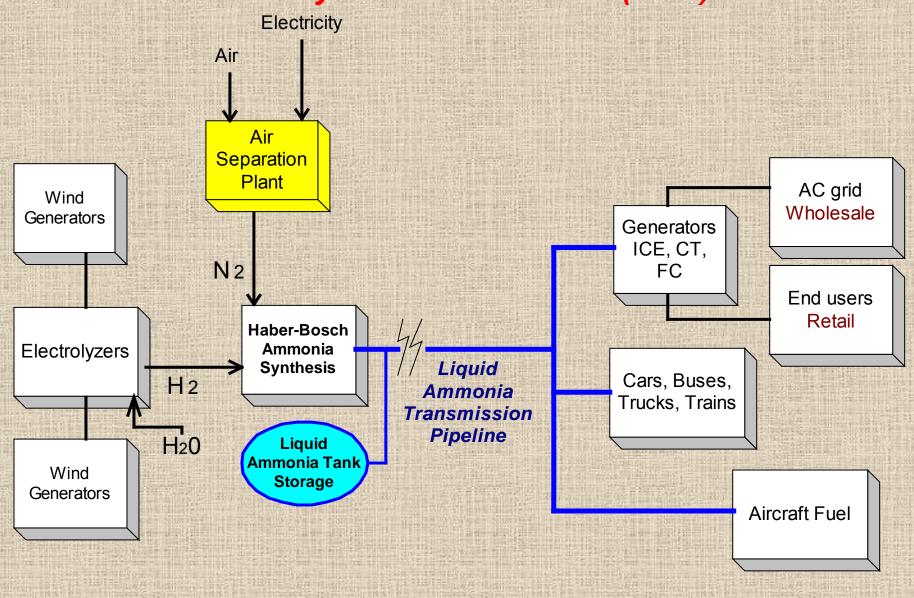
EETF Emerging Energy Technology Fund, State of AlaskaAEA Alaska Energy Authority, State of AlaskaAASI Alaska Applied Sciences, Inc.

SSAS Pilot Plant Schedule

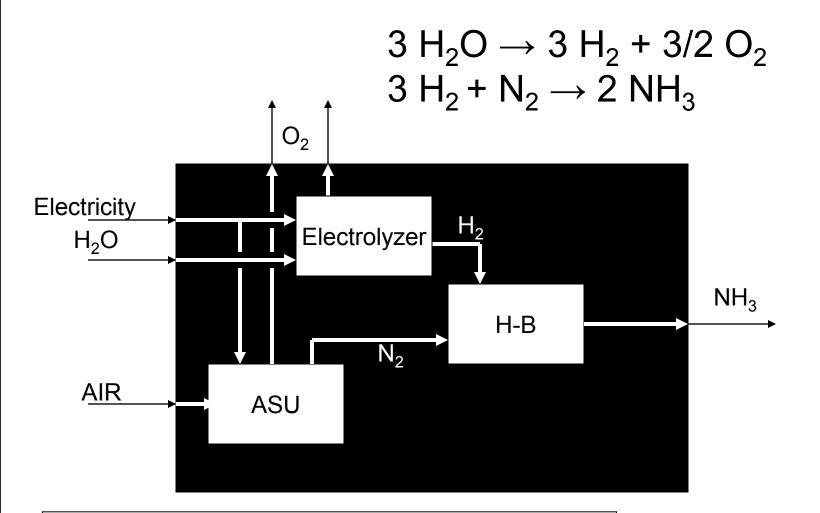

- 1. Test PCC tubes; accept
- 2. Build and test multi-tube reactor
- 3. Build and test BOS
- 4. Instrument with SCADA, remote read at UAF
- 5. Add regeneration: NH3 \rightarrow electricity to grid
- 6. Package in insulated CONEX
- 7. Acceptance test
- 8. Transport to Juneau, AK for demo
- 9. Demo at other AK sites as budget allows
- **10. Upgrade as budget allows**

Project Fundamentals

- 1. Anhydrous ammonia (NH3) is a fuel and transmission and low-cost energy storage medium
- 2. NH3 made from renewable energy (RE) electricity, water, and air (Nitrogen, N2) by:
 - a. Electrolysis + Haber-Bosch (EHB)
 - b. Solid State Ammonia Synthesis (SSAS)
- 3. SSAS should best EHB in:
 - a. Capital cost per kWe in, kg NH3 out
 - b. Energy conversion efficiency
 - c. System simplicity, low O&M cost
 - d. AK value

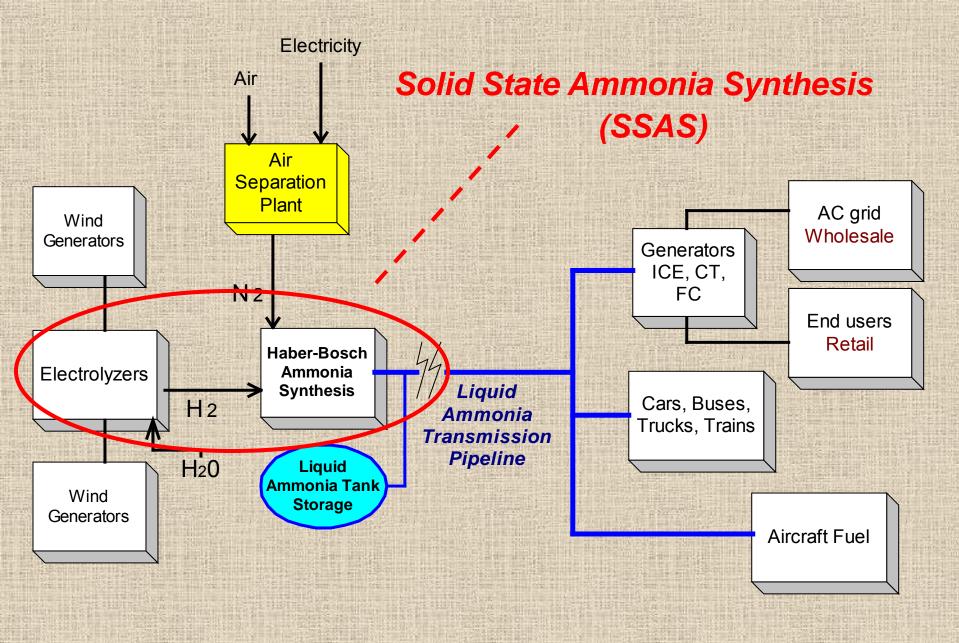

Project Fundamentals

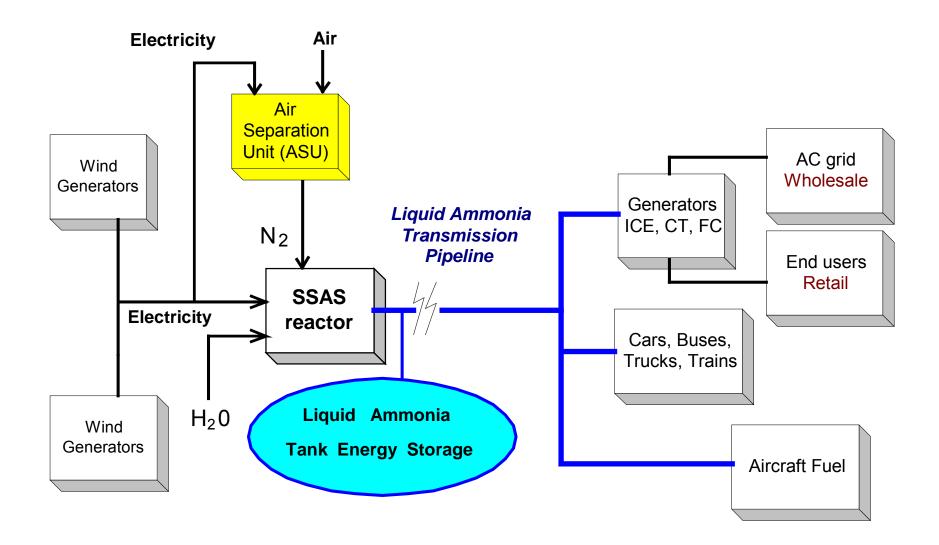
- 4. SSAS unproven: needs proof-of-concept, small pilot plant
- 5. Design and build pilot plant:
 - a. Complete
 - b. SCADA instrumented
 - c. Containerized & transportable
 - d. Upgradeable
- 6. Success:
 - a. Great value to AK, beyond
 - b. Next steps to commercial
 - c. SA AK "RE Cluster Industry" via USFS, JEDC



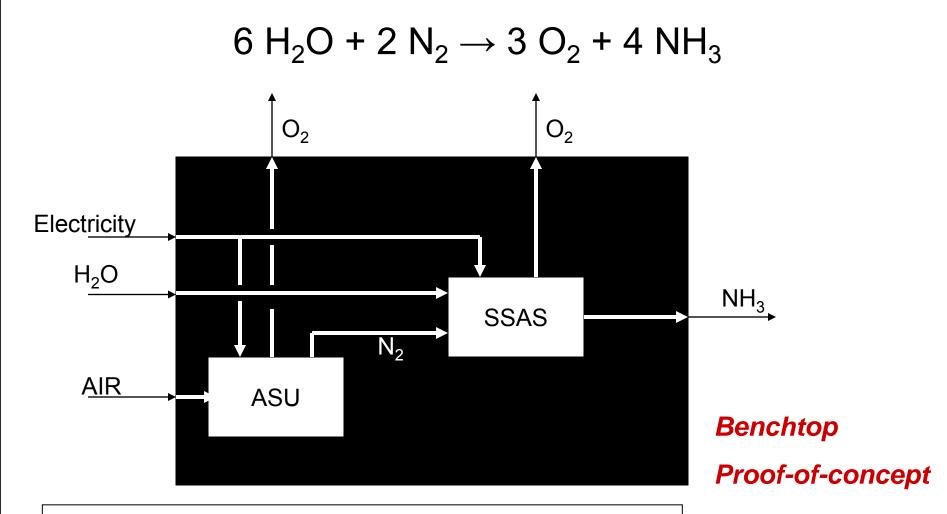
PROJECT: Complete RE – NH₃ SSAS Storage System
> NH3 synthesis from RE electricity, water, air (N₂)
> Liquid NH₃ tank storage
> Regeneration + grid feedback
> SCADA instrumentation → UAF - ACEP

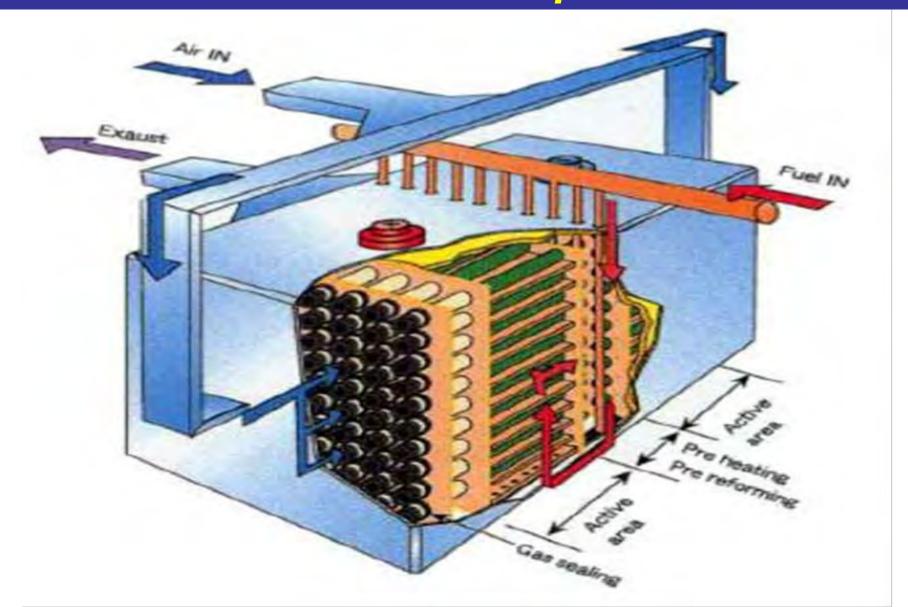
RE Ammonia Transmission + Storage Scenario: Electrolysis + Haber-Bosch (EHB)



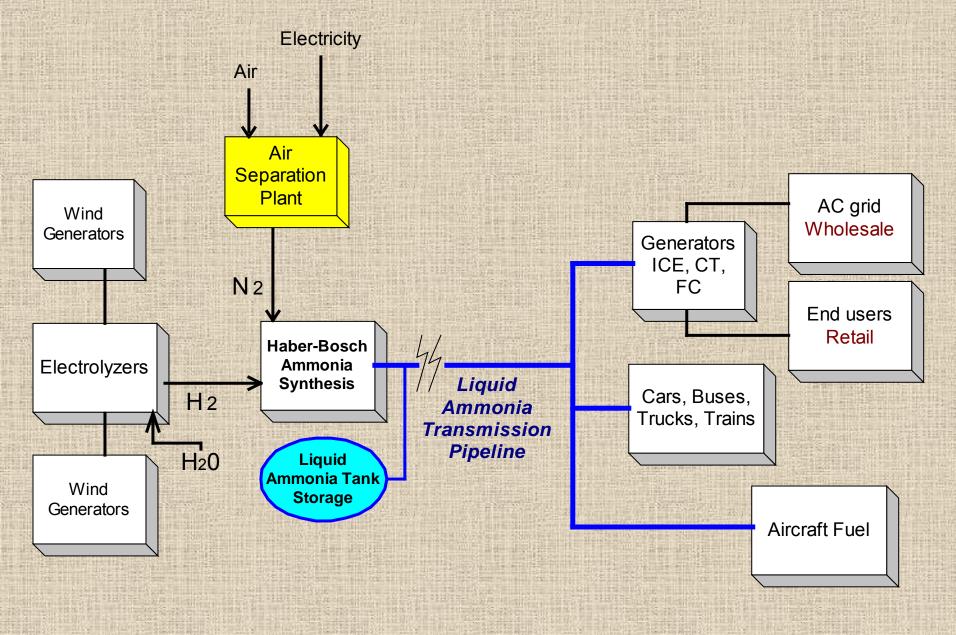

Inside the Black Box: HB Plus Electrolysis

Energy consumption ~12,000 kWh per ton NH₃

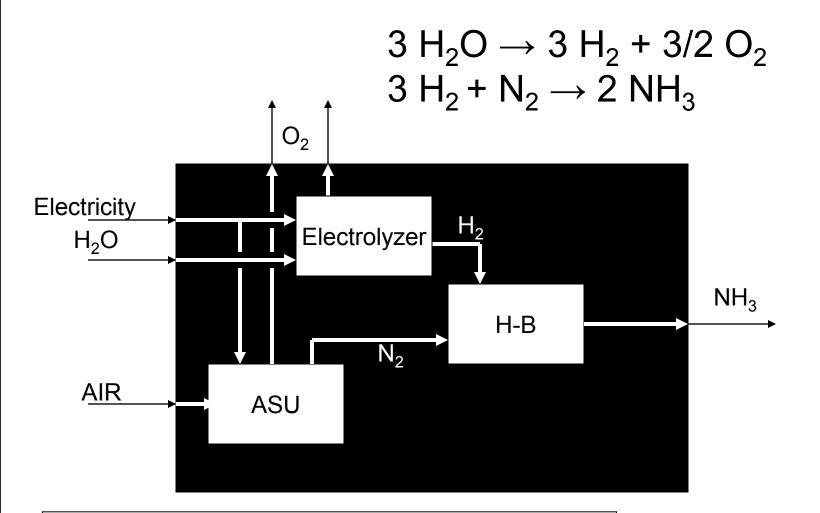

RE Ammonia Transmission + Storage Scenario


Solid State Ammonia Synthesis (SSAS)

Inside the Black Box: Solid State Ammonia Synthesis



Energy consumption 7,000 – 8,000 kWh per ton NH_3


Solid State Ammonia Synthesis (SSAS) NHThree LLC patent

RE Ammonia Transmission + Storage Scenario

Inside the Black Box: HB Plus Electrolysis

Energy consumption ~12,000 kWh per ton NH₃

'09 ARPA-E "Grids" Goal: \$100 / kWh

"Atmospheric" Liquid Ammonia Storage Tank (corn belt)

30,000 Tons 190 GWh \$ 15M turnkey \$ 80 / MWh \$ 0.08 / kWh

> -33 C 1 Atm

Why SSAS?

Electrolysis + Haber-Bosch too costly From RE electricity Capital components at low capacity factor (CF) Energy conversion losses Proton conducting ceramics (PCC) now Solid oxide fuel cell (SOFC) success Need stranded RE transmission Need RE storage

EHB vs SSAS prelim estimates

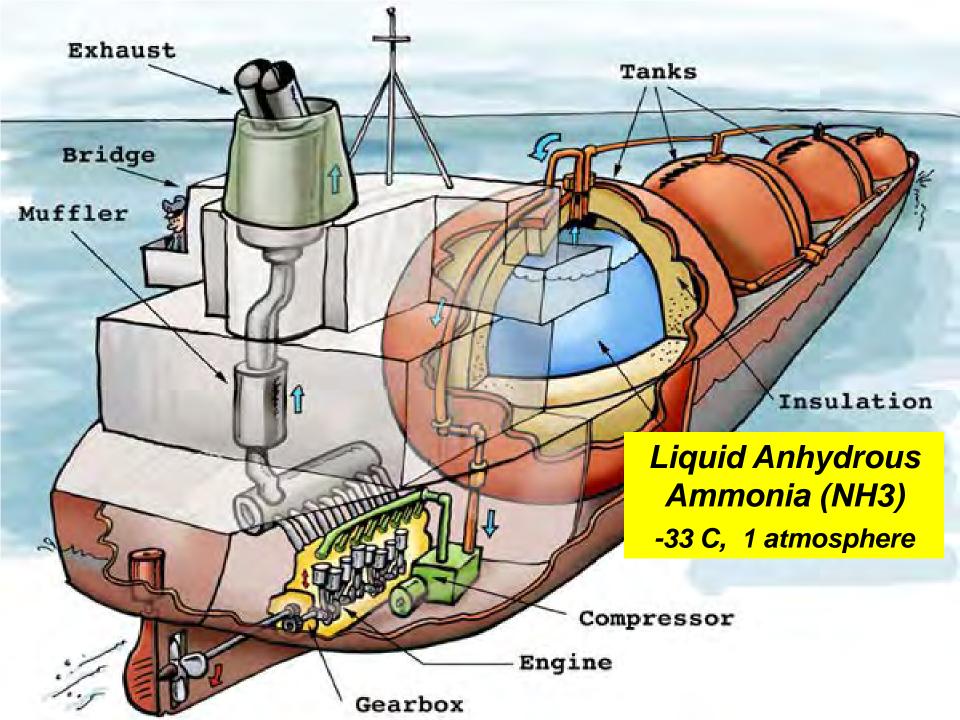
EHB: 11-12 kWh / kg \$1,000 / kWe input capital cost

SSAS: 7-8 kWh / kg \$500 / kWe input capital cost \$200K / Mt / day capital cost

Great Reward, and Risk

Project success: SSAS "works"

- Reactor, multi-tube
- Power electronics drive
- Regeneration from stored NH3
- SCADA: UAF ACEP download
- Complete system functions, efficient
- Complete system durable, reliable
- Cost estimates: capital, O&M


Next steps?

Great Reward, and Risk

AK renewable energy (RE) opportunities:

- 1. Village energy "independence"
- 2. Annual-scale firming storage
- 3. Transmission for:
 - a. Intrastate AK
 - b. RE export
- 4. Fuel for military land and sea
- 5. Incubator, test sites, commercial rollout

Scales: Village \rightarrow Susitna Hydro \rightarrow Global export

Project Objectives

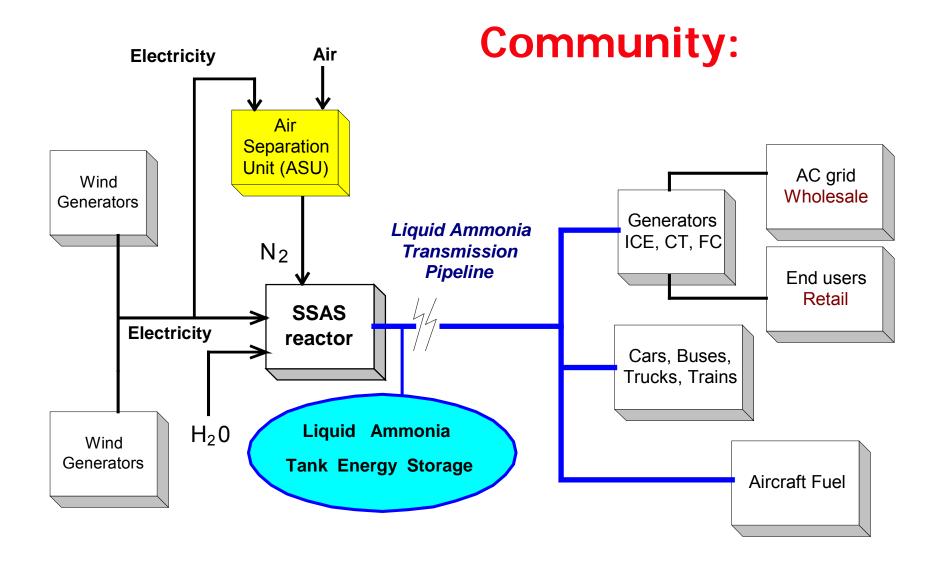
- Run AK, world on RE: all energy, beyond electricity
- Discover and demo SSAS potential
- Demo complete RE storage system
- Begin commercialization
- Attract funding

Project Goals

- **1. Estimate efficiency**
- 2. Estimate capital cost:
 - a. PCC tube area, tube
 - b. Reactor
 - c. Power electronics drive
- 3. Dynamics
- 4. TRL 5 6
- 5. Attract RE industry: AK, US, global, ARPA-E

State of the Art; Competition

Electrolysis + "Haber-Bosch" = EHB


- NH3 United, TX + Canada NH3
- Proton Ventures
- Freedom Fertilizer
- Other "SSAS"

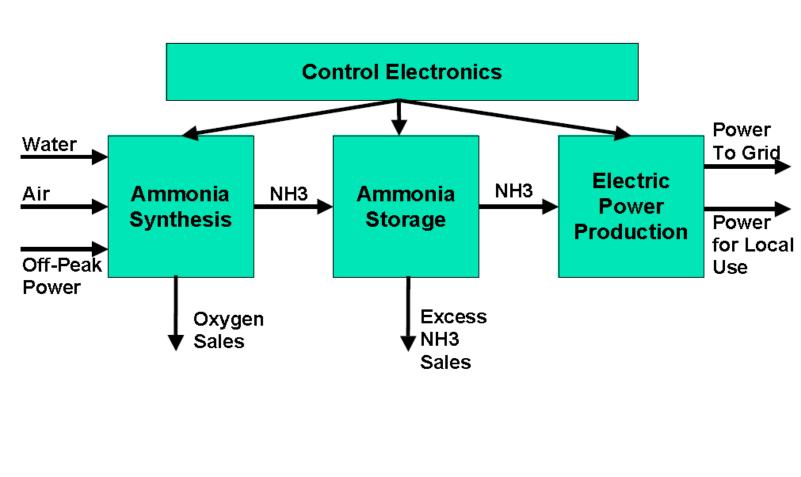
EHB vs SSAS prelim estimates

EHB: 11-12 kWh / kg \$1,000 / kWe input capital cost

SSAS:

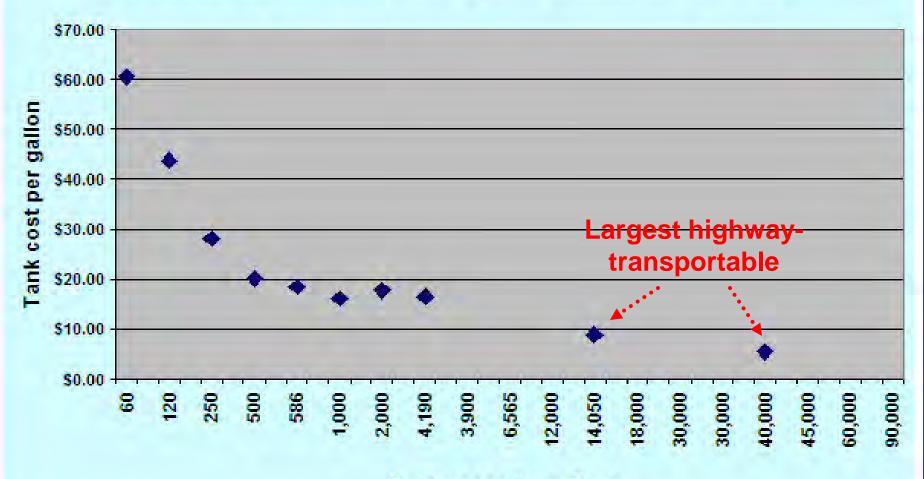
7-8 kWh / kg\$500 / kWe input capital cost\$200K / Mt / day capital cost

Solid State Ammonia Synthesis (SSAS)

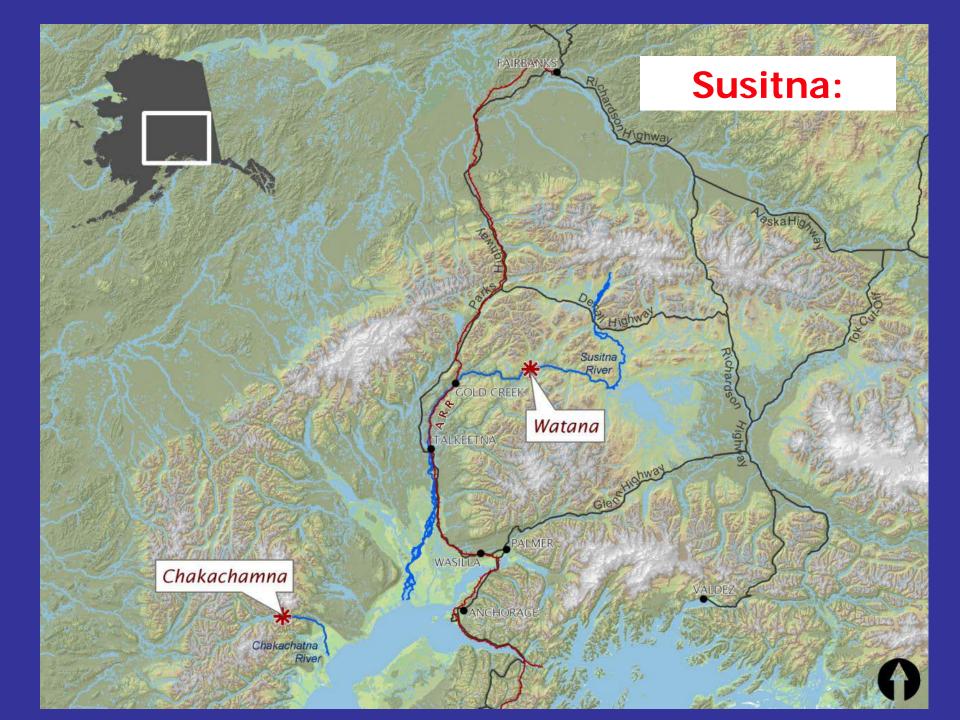

NH3: "The other hydrogen"

EL.

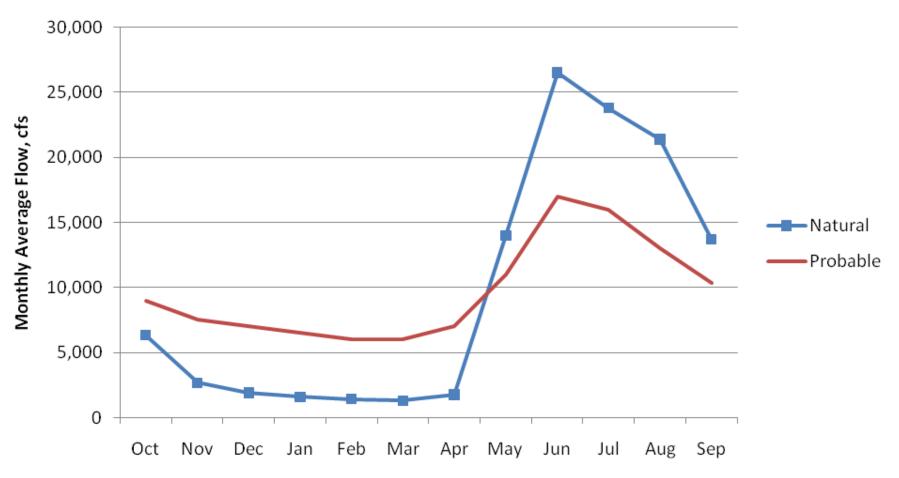
Hydrogen Hub 10 Megawatt Capacity Site Site Area: 4.57 acres


Preston Michie, Jack Robertson: 2009 Former BPA; Northwest Hydrogen Alliance

Hydrogen Hub Concept

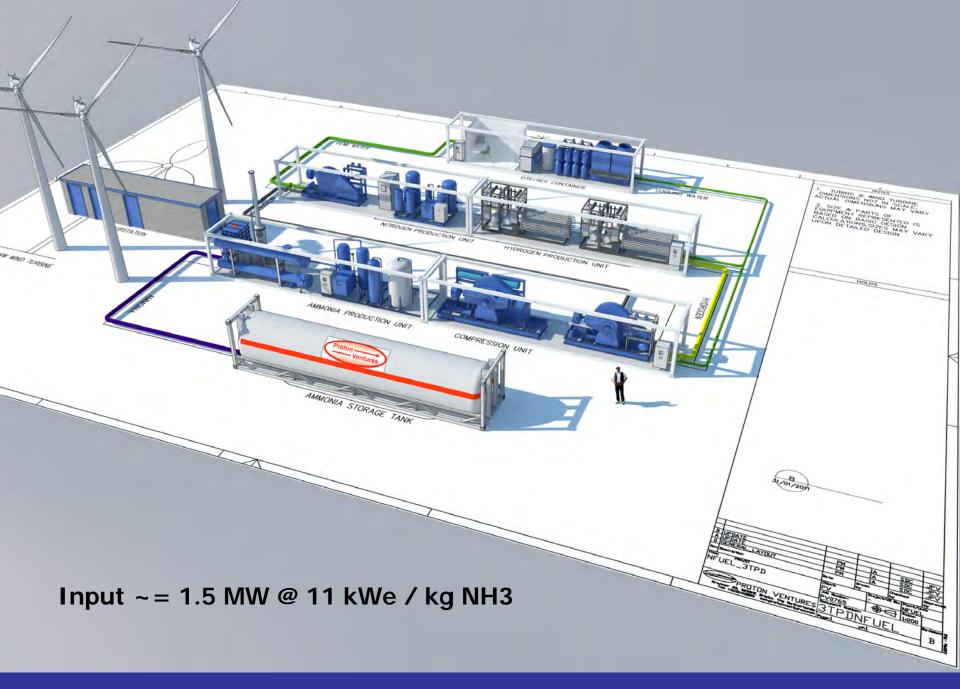

Liquid Ammonia Tank Storage

Cost per Gallon: 250 psi Ammonia Tanks



Tank capacity, gallons

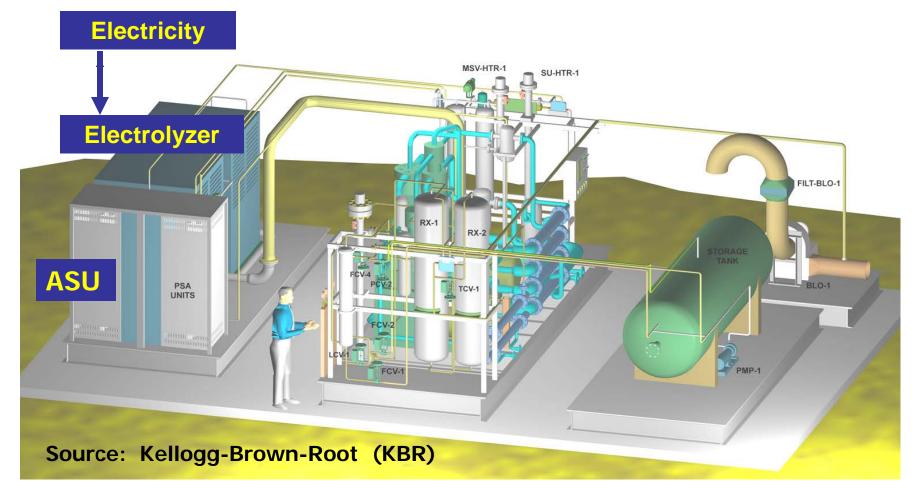
Susitna River Flows


Military: Land + sea fuel

- USCG, Navy ships
- Land vehicles: road, rail
- Recip engines modify: multifuel, Sturman
- Mini + micro app's

State of the Art; Competition

- Electrolysis + "Haber-Bosch" = EHB
 - Proton Ventures
 - Freedom Fertilizer
 - NH3 United, TX + Canada NH3
- Other "SSAS" suppliers
- Do not deploy novel, complex systems in Alaska villages: EHB too risky ?



3 Mt / day Electrolysis + Haber-Bosch (EHB) NH3 plant by Proton Ventures

Ouoted at \$4M. Delivered ? Contact: Steve Gruhn sgruhn@freedomfertilizer.com

Freedom Fertilizer 1.5MW Nitrefinery

Village-scale 3 Mt / day Mini-NH3 Plant RE Electricity Haber-Bosch

Opportunity: Alaska Applications

- 1. Village energy "independence": degree
 - a. Internal, external energy economies
 - b. Diverse renewable sources
 - c. Low-cost tank storage
 - d. CHP, transportation fuels
- 2. Firming storage: annual scale
 - a. Susitna hydro
 - b. Other
- 3. Export large, diverse, stranded renewables
 - a. Cryo tankers: global trade
 - b. "Green" NH3 premium? C-tax required?
 - c. SE AK "Cluster Industry"
 - d. Aleutians cargo ship fueling
- 4. Military fuel: ground, marine
 - a. USCG, Navy
 - b. Other services
 - c. DOD Assistant Secretary Sharon Burke visit 3-7 Aug 12

Markets: Supply, Demand, Price

- Supply Push
- Demand Pull
- Alaska incubator, rollout
- Price
 - Competition
 - Substitutes
 - Volume
 - Condition changes

Solid State Ammonia Synthesis Pilot Plant (SSAS-PP) Demonstration System or Renewable Energy (RE) Firming Storage, Transmission, and Export

> Bill Leighty, Principal Alaska Applied Sciences, Inc. Box 20993, Juneau, AK 99802 wleighty@earthlink.net 907-586-1426 206-719-5554 cell