

NH₃ Fuel "The Other Hydrogen"

Norm Olson P.E.

NH₃ VIII

September 30 – October 3, 2012

San Antonio, Texas

Potential NH₃ Fuel Advantages

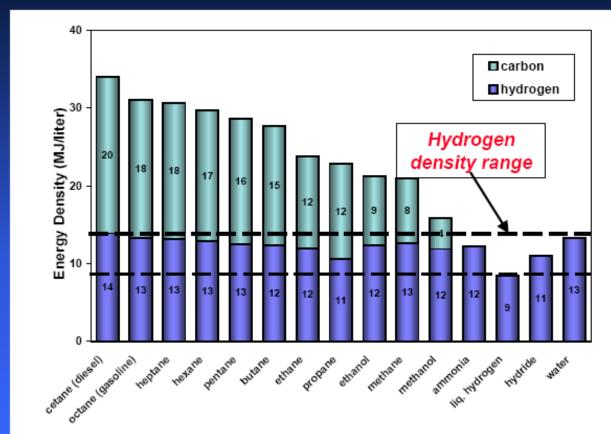
Production Flexibility – Wind, Solar, Biomass, Nuclear, Coal, Natural Gas, etc.

Existing Delivery Infrastructure

Cost Competitive

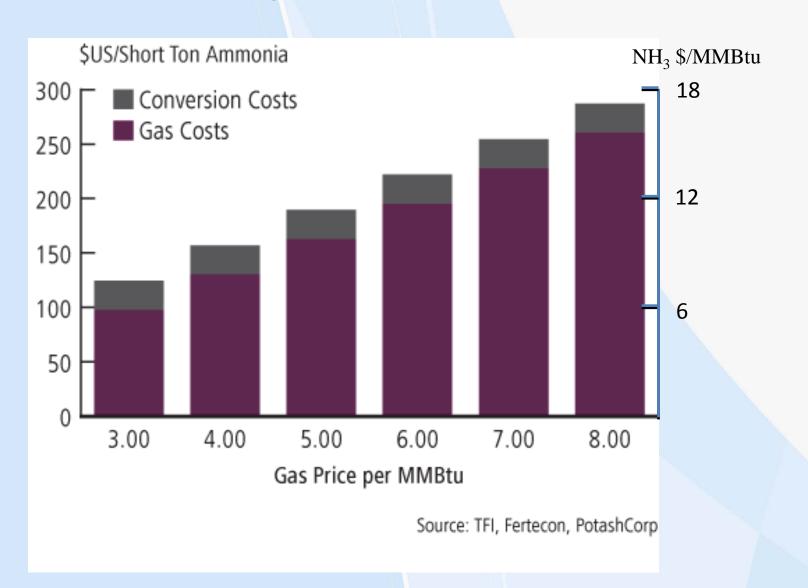
Environmentally Friendly

End Use Flexibility – IC and CI Engines, Fuel Cells, Gas Turbines, etc.

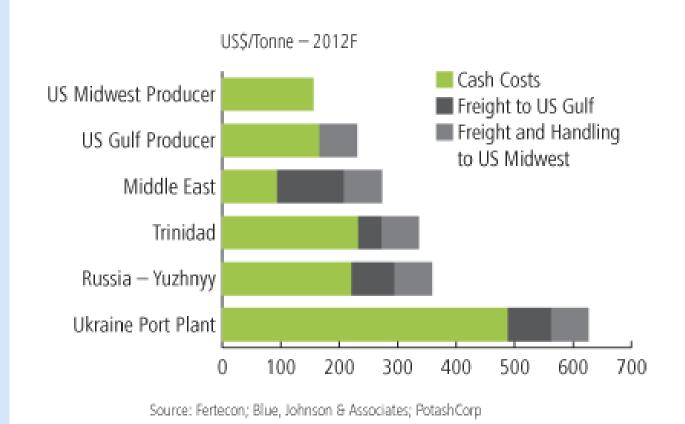

Proven, Acceptable Safety Record

Freedom Car Targets w/ 2005 NH₃ Comparison

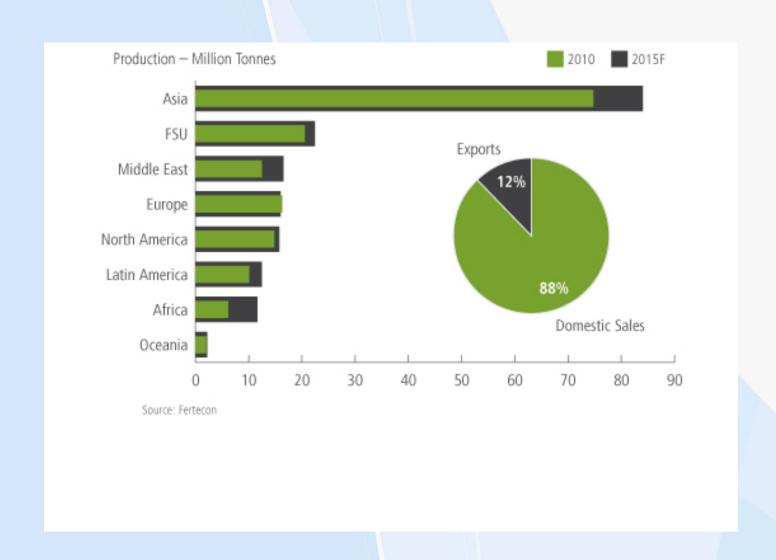
Parameter	Units	2007	2010	2015	NH₃ (2005)
Spec. Energy	kWh/kg	1.5	2	3	3.0
Energy Density	kWh/L	1.2	1.5	2.7	2.7
Storage Cost	\$/kWh	6	4	2	2.1
Fuel Cost \$/g	al. Gas equiv	3	1.5	1.5	1.7*


^{*\$280/}ton ammonia

Energy densities (LHV) for fuels in liquid state



NH₃ Production Costs



US Midwest Delivered Ammonia Cost

Interior plants have significant delivered cost advantage

NH₃ Production

Delivery Infrastructure

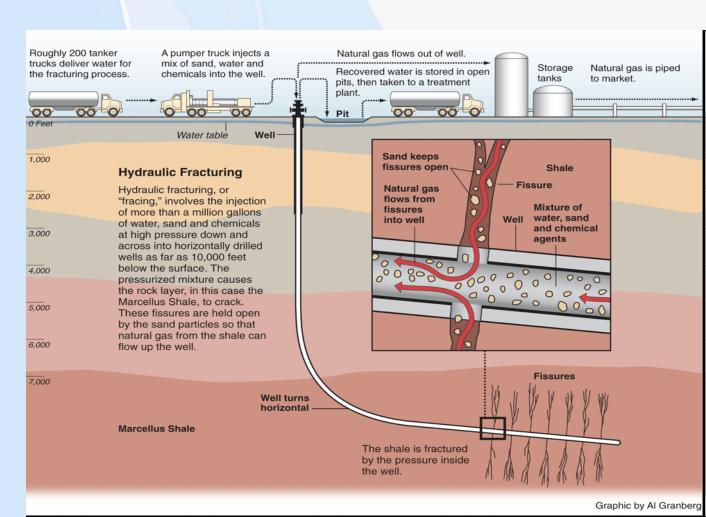
NH₃ is one of the top three chemicals shipped worldwide.

Ammonia Storage & Transport

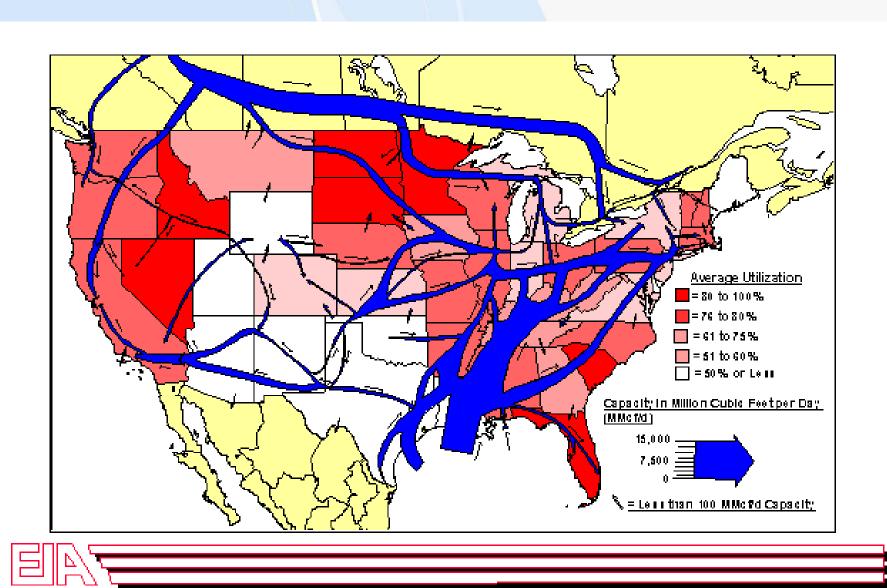
U.S. Ammonia Pipeline

Nearly 3000 Miles Total

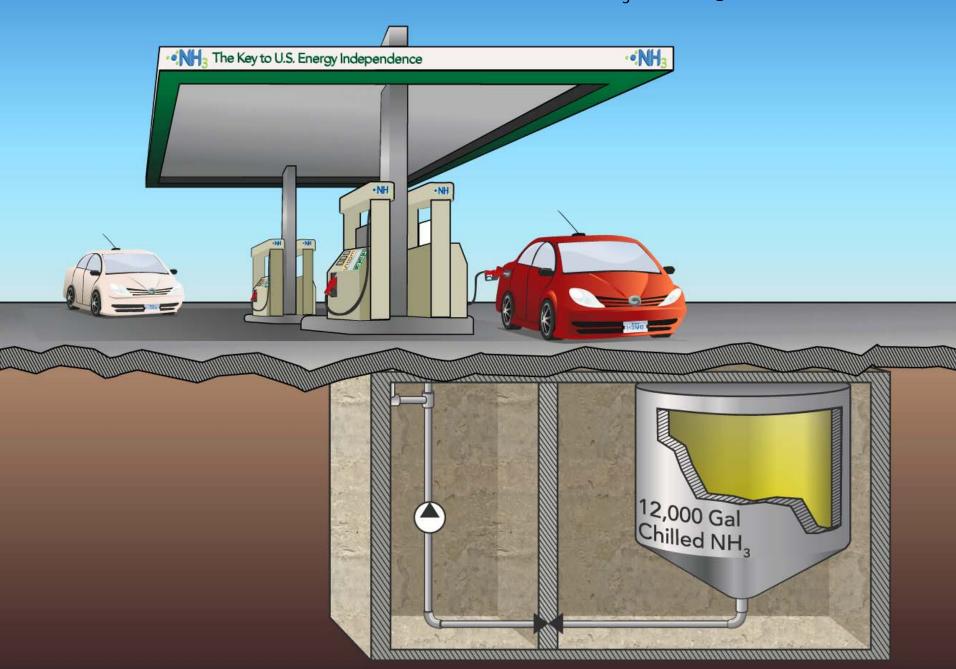
Iowa NH₃ Outlets


Over 800 retail ammonia (the "Other Hydrogen") outlets currently exist in Iowa.

NH₃ and Natural Gas


Convert CH₄ to NH₃ at well head, sequester CO₂ in natural gas well to extend well production and use natural gas pipeline (with modifications) to ship NH₃

1.5 times more energy capacity when transporting NH₃ than CH₄ for a given pipeline size


More efficient energy transport

Natural Gas Pipelines

NH₃ Refueling Station

Safety

- NH₃ is a common, naturally occurring chemical found in all animal life forms. It is not a carcinogen and is not a greenhouse gas.
- NH₃ is safer than propane and as safe as gasoline when used as a transportation fuel.
- Iowa Energy Center funded a comparative quantitative risk assessment (CQRA) study completed March 2009, by Quest Consultants Inc., Norman, Oklahoma
- "Safety assessment of NH3 as a transportation fuel," Nijs Jan Duijm, Frank Markert, Jette Lundtang Paulsen, Riso National Laboratory, Denmark, February 2005
- NH₃ plant operators
- NH₃ safety is an engineering issue. It can be made to be as safe as is necessary.
- NH₃ is classified by DOT as a non-flammable liquid and an inhalation hazard (not a poison).

Vehicle On-Board Storage

Properly designed, pressurized (250 psi rated)

NH₃ vehicle fuel tanks meet international requirements for acceptable safety.

Concerns?

Ephedrine and Pseudoephedrine

 $C_{10}H_{15}NO$

Methamphetamine


 $C_{10}H_{15}N$

 $VOC's + NOx + O_2 + Sunlight = ozone = smog+$

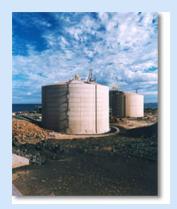
 $NOx + H_2O + NH_3 = ammonium nitrate = smog-$

NH₃ is actually used to clean up NOx emmissions at coal plants

NH3 Fertilizer Application

Anhydrous ammonia expands into a gas as it is injected into the soil where it rapidly combines with soil moisture.

Potential End Use Applications


- Spark-Ignition Internal-Combustion Engines
- Diesel Engines
- Direct Ammonia Fuel Cells
- Gas Turbines
- Gas Burners (including residential furnaces)

Future Compatibility

Hydrogen + Nitrogen

Ammonia

Storage & Delivery - Pipeline, Barge, Truck, Rail

Stationary Power

Fertilizer

Transportation

International Energy Agency 2012

What causes oil supply disruptions?

The three most common reasons for disruption in the supply of oil are unforeseen technical problems, the weather – such as seasonal storms in the Gulf of Mexico - and civil unrest - such as the civil war in Libya in 2011. Military or terrorist attacks which target energy infrastructure for political motives, or disputes between governments, while rare, are other significant concerns for world oil markets.

R/P Ratio

	U.S. R/P Ratio	China R/P Ratio
Oil	10.8	9.9
Natural Gas	13.0	29.8
Coal	239	33.0

Reserves-to-production (R/P) ratio – If the reserves remaining at the end of any year are divided by the production in that year, the result is the length of time that those remaining reserves would last if production were to continue at that rate.

Proved reserves of oil – Generally taken to be those quantities that geological and engineering information indicates with reasonable certainty can be recovered in the future from known reservoirs under existing economic and operating conditions.

Source: BP statistical Review of World Energy, June 2012

Past/Present Iowa Energy Center Funded Work

Dr. Andreja Bakac

Novel ammonia synthesis

Dr. Song Charng Kong

Ammonia use in diesel and spark ignition engines

Dr. Johna Leddy

Novel ammonia synthesis

Dr. Terrence Meyer

Ammonia combustion

Quest Consultants

Comparative Risk Assessment Analysis

More Work To Do?

Additional Research Areas?

Demonstrations - vehicles/engines/gas burners/others?

Marketing?

Auto Manufacturers Participation?

Collaborations?

DOE Support?

State Support?

What Else?

Summary 1

- NH₃ meets critical 2015 Freedom Car targets today.
- NH₃ has an extensive, worldwide transportation and storage infrastructure already in place.
- H₂ and NH₃ can have very low tailpipe greenhouse gas emissions (with controls).
- H₂ and NH₃ can be made from electricity and water (+air for NH3).
- NH₃ can replace diesel fuel, gasoline, natural gas and propane in many fuel-related applications.
- NH₃ is a hydrogen dense chemical, ~50% greater (volume basis) than 10k psi hydrogen.

Summary 2

- Most NH₃ is currently produced from coal and natural gas.
- NH₃ can be produced using renewable energy (Including wind, solar, OTE, hydro, etc.)
- NH₃ diesel (CI) and spark-ignition (SI) engines have been demonstrated.
- Direct NH₃ fuel cells are being developed.
- NH₃ is not a greenhouse gas. It is a prevalent, naturally occurring chemical.
- Any transportation fuel has associated safety risks but NH₃ is as safe as gasoline and safer than propane according to two, highly-credible studies.
- Hydrogen stored, delivered and utilized in the form of NH₃ has several significant benefits.

Questions?

Norm Olson P.E.

nolson@iastate.edu

Iowaenergycenter.org