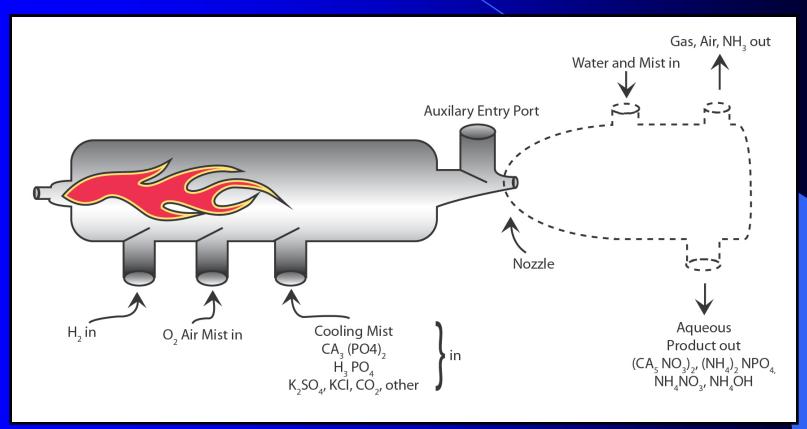
$N_2 \longrightarrow N_1 \longrightarrow NH_3$ Making Ammonia for Fuel PURE ENERGY, WATER AND FERTILIZER FOR OUR PLANET

ALTMERGE LLC

Bruce H. Peters, M.D. Ammonia as Fuel Conference October 2012

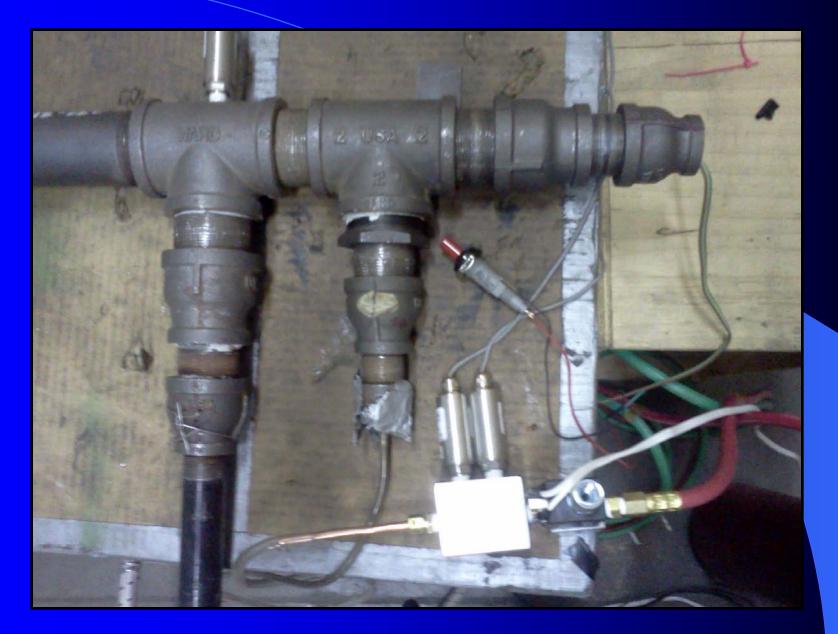

Ammonia as Fuel Conference

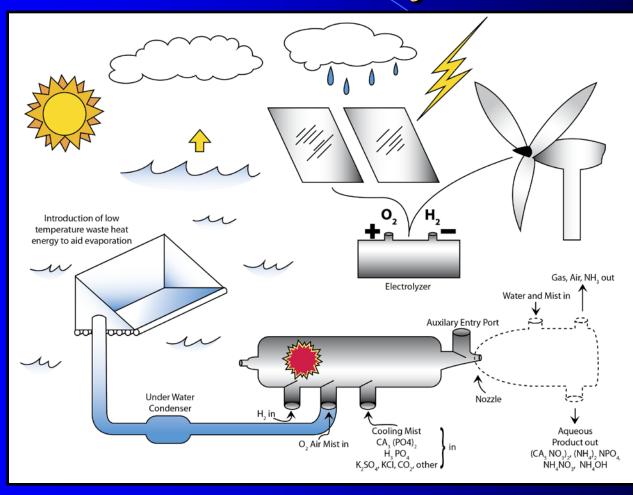
Another way to make ammonia. Simply and locally. Chembustion... The use of modified combustion for chemical production.

The Chemical Pathway

 $N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$ - Haber/Bosch Process $N_2 + O_2 \rightleftharpoons 2 NO$ $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$ $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}_3$ - Birkeland/Eyde/Hausser Process $HNO_3(aq) + NH_3(g) \rightarrow NH_4NO_3(aq)$

The Hydrogen Pulse Jet


Old Sparky Actual Photos


Table of Products

	<u>Nitrate</u>	<u>pH</u>
Hydrogen Flow Furnace	14.99 µgm/mL	6.4
(H ₂ , ambient air with vapor)		
Pulse Jet Initial Run	311.8 µgm/mL	6.1
Best Pulse Producing	1056.8 µgm/mL	7.46
NH ₄ NO ₃ ,+NO ₂	0.11 gm/L H ₂	
Modified Process, no uncombusted O_2 NH ₃ \longrightarrow NH ₄ OH produced in H ₂ O	0.260 gm/L H ₂	9.5-11
Haber/Bosch Process Gold Standard	0.333 gm/L H ₂	

 $2NH_3+CO_2 \leftarrow (NH_2)_2CO+H_2O$

By introducing CO₂ as well, urea produced. If N_2 withheld and $O_2+H_2+CO_2$ combusted, hydrocarbons are made (CH₄)

Cartoon of System

Potential Applications (Direct)

- 1) Ammonia, and therefore fuel and fertilizer, produced without <u>need</u> for hydrocarbons.
- 2) Locally scalable, <u>inexpensive</u>.
- 3) Production of other commercial chemicals requiring high temperatures and pressures.

PURE ENERGY, WATER AND FERTILIZER FOR OUR PLANET

Fritz Haber and Carl Bosch took a table size unit making ammonia in drops to commercialization in 2 years... funded by BASF.

Thank you for your interest.