

Intermediate-temperature Tubular Direct Ammonia Fuel Cells

Sean Babiniec¹, Jason Ganley¹, Anthony Manerbino^{1,2}, Neal Sullivan¹ October 2nd, 2012

¹Colorado School of Mines ²CoorsTek, Inc.

Presentation Outline

- Introduction to Ceramic Fuel Cells
 - Solid Oxide Fuel Cells (SOFCs) vs. Protonic Ceramic Fuel Cells (PCFC)
- PCFC Materials and Fabrication Overview
 - Barium zircontate and barium cerate
 - Solid-state reactive sintering
 - Cathode application

PCFC Experimental Setup and Results

- Test stand description
- LSCF cathode
- LaCoO₃ infiltrated cathode

• Future Goals with Protonic Ceramic Fuel Cells

Ceramic Fuel Cell Overview

Direct "harvesting" of electrons increases energy efficiency as compared to combustion

Basic operation of SOFCs and PCFCs under ammonia fuel

 The choice between oxygen ion or proton conductivity affects the product gas streams

9th Annual NH₃ Conference

$$\begin{split} H_2O + V_O^{\bullet\bullet} + O_O^{\times} &= 2OH_O^{\bullet} \\ \frac{1}{2}O_2 + V_O^{\bullet\bullet} &= O_O^{\times} + 2h^{\bullet} \\ \frac{1}{2}H_2 + O_O^{\times} &= OH_O^{\bullet} + e' \end{split}$$

Key differences in SOFCs and PCFCs

- CFCC
- SOFC
 - Higher power densities
 - Oxygen ion transport generally quicker than protonic transport
 - Well understood technology/processing
 - Product gasses occur on anode side
 - H₂O, N₂, and possible NO_x
- PCFC
 - Proton-conduction can create higher-quality product gasses
 - NH₃ Fuel : N₂ on anode side, H₂O on cathode side
 - No possible NO_x formation
 - Can be used as membrane reactor
 - Hydrogen separation/pumping
 - Fuel de-hydrogenation
 - Steam electrolysis
 - Ammonia synthesis

Both power generation and fuel synthesis!

Protonic Ceramic History & PCFC Fabrication

Protonic ceramics of interest: Perovskite ABO₃ structures

CFCC

- BaCe_(1-x)Υ_xO_{3-δ} (BCY)
 - High protonic conductivity
 - Instability in CO₂ and H₂O environments
 - Can form barium carbonates/hydrates
 - Problematic for fuel cell operation
- BaZr_(1-x)Y_xO_{3-δ} (BZY)
 - Good chemical stability with CO_2 and H_2O
 - Lower protonic conductivity
 - Thought to be from high grain boundary resistance
- BaCe_{0.9-x}Zr_xY_{0.1}O_{2.95} (BCZY)
 - Can have good chemical stability
 - Determined by dopant amounts
 - Generally better protonic conduction than BZY

Perovskite structure (Grey atoms: A, Black: B, Blue: O) Image courtesy of Northwestern University

 $BaCe_{0,2}Zr_{0,7}Y_{0,1}O_{2,95}$ (BCZY27)

Synthesis of BCZY27 using solid-state reactive sintering

- Normal sintering temperature of BCZY is far too high
 - ~1700 °C, can cause Ba to volitize, creating Ba deficient phase
 - Creating dense ceramics very difficult
- Transition metal oxides extensively shown to lower sintering temps
 - NiO, ZnO, CuO
 - Lowers sintering temperature of dense BCZY27 to ~1575°C
- Precursor powders mixed with 1 wt.% NiO
 - "Green" ceramic shape formed
 - Calcination to desired phase happens simultaneously with sintering

Anode-supported anode-electrolyte membranes supplied by CoorsTek

Cell test preparation and test stand description

Cold zone sealing accomplished by Ultra-Torr fittings, 4-point wiring accomplished

Tube-in-shell reactor allows control over gas compositions for each electrode

PCFC with LSCF cathode exhibits poor performance on H₂ and NH₃ fuels

9th Annual NH₃ Conference

LSCF cathode delaminations reduce three-phase boundary density and reduce cell performance

• Increased three-phase boundary densities will likely lower polarization resistance significantly

Previous literature supports infiltrated cathodes

- Infiltration into a porous BCZY backbone connected to the electrolyte allows protonic transfer past the electrolyte
 - Extends three-phase region into the cathode
- S. Ricote et. al report that infiltrated LaCoO₃ greatly reduces polarization resistance of the cathode

Cathode material	Electrolyte	Cathode fabrication method	$p(H_2O)(atm)$	$R_p (\Omega cm^2)$
LaCoO ₃	BCZY27	Infiltration into	0.01	0.11
		porous backbone	0.03	0.14
Ba0.5Sr0.5Co0.8Fe0.2O3-0	BaCe _{0.9} Y _{0.1} O _{3-ô}	Screen printing	0.03	~1.5
		Spray deposition	-	~0.5
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$	BaCe _{0.9} Y _{0.1} O ₃₋₆	Screen printing	0.03	~6
	$BaCe_{0.9}Y_{0.1}O_{3-\delta}$	Painting of slurry	0.03	~7.9

Ricote et. al ~ JPS 218 (2012) 313-319

Infiltrated LaCoO₃ a good choice for PCFC cathode

Fabrication and synthesis of infiltrated LaCoO₃ cathode

CFCC

- BCZY porous "backbone" roll-coated on electrolyte
 Sintered at 1300°C
- La and Co nitrates dissolved in water at stoichiometric amounts
 - Cation solution beneficial for small-particle synthesis
- Solution infiltrated into BCZY cathode
 - Dried at 300°C, repeated 6 times to get adequate loading
- Final calcination occurs at 700°C
 - Performed in-situ for 2 hours

Test failed: Calcination of LaCoO₃ in electrolyte pinholes shorted anode and cathode

- Cell initially had electrical isolation between anode and cathode
- After 2 hour calcination of LaCoO₃, no cell potential present
 - Multi-meter test indicates short between anode and cathode
 - Resistance of ~26 Ohms
- Short remains present even when temperature reduced to 400°C

- Short disappears when cell is at room temperature
 - LaCoO₃ not adequately conductive at room temperature

Most-mortem SEM images show good microstructure and well-dispersed LaCoO₃ nano-particles

Where to go from here?

- Resolve macroscopic pinhole issue
 - Plug with glass
 - Sinter pinholes with small particle BCZY
- Finish performance testing as fuel cells
- Begin using protonic ceramic cells as electyrolyzers

Protonic membranes allow a product stream free of diluants

CFCC

PCFC allows synthesis of anhydrous ammonia!

Acknowledgements and Questions

- CFCC
- Funding provided by : U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy
- Tubular half cells provided by CoorsTek, Inc.
- Technical support from Jason Ganley and Sandrine Ricote

Questions?