

The Dual-Fuel Strategy An Energy Transition Plan

William Ahlgren
Electrical Engineering Department
California Polytechnic State University
San Luis Obispo, CA 93407-0355
wahlgren@calpoly.edu

Ammonia hazard assessment

"[Ammonia's] toxicity and high production volume prompted EPA to list ammonia as an extremely hazardous substance...[and]...require that facility employees who could potentially be exposed to ammonia in any form be trained in the safe use and potential hazards posed by this chemical. *EPA stresses* that although mishandling of ammonia can cause harm, there is no cause for undue alarm about its presence in the community. Ammonia is typically handled safely and without incident." [italics added]

Personal Protective Equipment (PPE) Requirements For Ammonia

Ammonia-methanol dual-fuel pair

Ammonia is carbon-free...

...but high relative toxicity

Methanol is low relative toxicity...

...but contains carbon

They are complementary:

Each has strength to compensate the other's weakness.

Ammonia most, methanol the rest

- Ammonia: professional fuel-handlers with equipment and training
- Methanol: when non-professional persons must handle fuel

Better alternatives?

- Nitrofuel is nitrogen-based renewable fuel
 - NH₃ is the simplest example
 - Mixtures (e.g. Divers' solution) may be better
 - Key feature: zero (or low) carbon
- Carbofuel is carbon-based renewable fuel
 - CH₃OH is the simplest example
 - Others (e.g. EtOH, DME, CNHCs) may be better
 - Key feature: low relative toxicity

Methanol/C-fuel

Methanol/C-fuel

Ammonia/N-fuel

Energy density?

Ammonia/N-fuel

Sustainable global energy system

Highly inter-connected source-vector network makes for stable supply at low cost.

Dual-fuel energy triangle

All energy trade is carried by two (or few) renewable fuels plus electric power, inter-convertible with each other.

Fossil fuels are hard to displace

- 1. EROI
- 2. Economic inertia

Feedback prevents change

Status quo is stabilized in a <u>vicious</u> cycle: economic inertia.

Feedback will enable change

Change is driven by a <u>virtuous</u> cycle after a threshold stimulus is applied.

Trigger

Liquid renewable fuels with

- stable supply
- one-half cost per energy unit
- ...compared to competing fuels.

Dual-fuel strategy

- First establish market for renewable fuel
- Use natural gas as low-cost source to trigger the transition
- Gas-to-liquid provides competitive advantage
- Technology for production from renewable sources will follow

Fuel production

- Petrochemical (chemical-to-chemical)
- Thermochemical (heat-to-chemical)
- Photochemical (light-to-chemical)
- Electrochemical (electric-to-chemical)

Petrochemical production

Natural gas (and maybe coal)

Ammonia (or N-fuel)

Methanol (or C-fuel)

Renewable fuels from fossil sources

- Standard practice today
- GTL/STL gives competitive advantage
- Trigger transition to DFX

It costs energy to convert NG to ammonia/methanol. Why do it?

- Liquids are easy to transport and store
- Safety advantage—low explosion hazard
- Carbon advantage—no CO₂ emissions from ammonia at the point-of-use
- ⇒ Lower cost delivered to consumer

Are we there yet?

2009 cost estimates

Fuel	P (bar)	Density (kg·L ⁻¹)	HHV (MJ·kg ⁻¹)	Energy density (MJ·L ⁻¹)	Cost per volume (CN\$·L ⁻¹)	Cost per energy (CN\$·GJ ⁻¹)	1 gal = 3.8 L
Ammonia	10	0.603	22.5	13.6	0.18	13.3	
CNG	250	0.188	42.5	10.4	0.23	28.2	
LPG	14	0.388	48.9	19.0	0.55	28.5	
Methanol	1	0.786	22.7	17.8	0.42	23.5	
Gasoline	1	0.736	46.7	34.4	1.00	29.1	8
Hydrogen	14	0.025	142	3.6	0.10	28.2	_

C. Zamfirescu and I. Dincer, "Ammonia as a green fuel and hydrogen source for vehicular applications." *Fuel Processing Technology* 90: 729–737 (2009). Hydrogen storage as metal hydride is assumed. Methanol specific energy restored from reformer-adjusted to true value.

Thermochemical

Direct path from solar thermal and nuclear to renewable fuels.

Solar thermal (and maybe nuclear)

Ammonia

Methanol

Photochemical

Direct path from solar to renewable fuels.

Solar

Ammonia

Methanol

Example from LBNL

Applause!

Electrochemical

An indirect path through electric power.

Example: HTEC

High-temperature electrochemical conversion using proton-conducting solid electrolytes

Conclusion

- Hydrogen as renewable fuel has a fatal flaw: it is a high vapor-pressure gas
- Ammonia and methanol have long been known as *liquid* renewable fuels
- Alone, each has it's own flaw that has historically discouraged development
- Together, they are a superior alternative to hydrogen