Prosperity for Delmarva

Plan for Sustainable Growth and Clean Life for Our Citizens

Clean Solutions

- Clean Air
- Clean Water
- Clean Food
- Clean Energy
- Clean Growth of Jobs and Prosperity
- Fully Sustainable for Generations

Clean Air, Water, Food, & Energy

- Eliminates Carbon and All Fossil Fuels from Our Environment
- Eliminates Nuclear Power and All Its Faustian Bargains
- Eliminates All Sources of Heavy Metals, Biotoxins, and Toxic Wastes from the Air, Water, and Food
- Uses Clean Energy for a Clean Life

Clean Growth of Jobs and Prosperity

- All Materials and Resources Taken from Delmarva
- Human Resources Are Already Here, Waiting for the Opportunities
- Financial Resources Are Already Available Right Here
- Technology Is All Home–Grown
- Clean Energy Resource Is Abundant and Right Here

Fully Sustainable for Generations

- Delaware
 - Population:
 - 200,000 Rural, 700,000 Urban
- Maryland
 - Population:
 - · 310,000 Rural, 5,650,000 Urban
- Virginia
 - Population:
 - 1,110,000 Rural, 6,770,000 Urban

Expected Changes

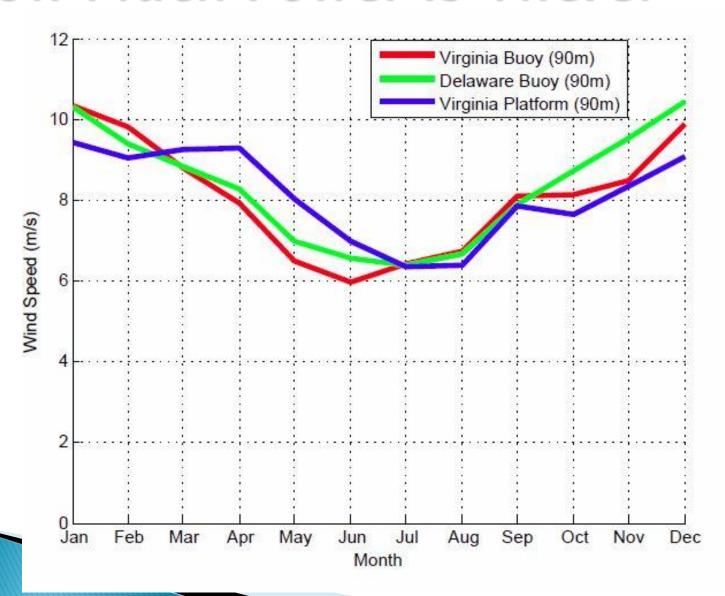
- Approximately 7% Growth in Population Per Decade
- Reduction of 10% Per Capita Fossil Energy Use Per Decade
- ▶ 90% Reduction In Pollutants by 2050
- Unemployment Rates Well Below 4% for the Rest of the Century
- Vast Expansion of the Middle Class

New Jobs

- Two Million New Jobs Created for Clean Energy
- One Trillion Dollar Industry Centered in Delmarva
- World-Class Competitive System for Delmarva's Economy
- All Intellectual Property Based Upon U.S. Inventions

Elements Of The Solution

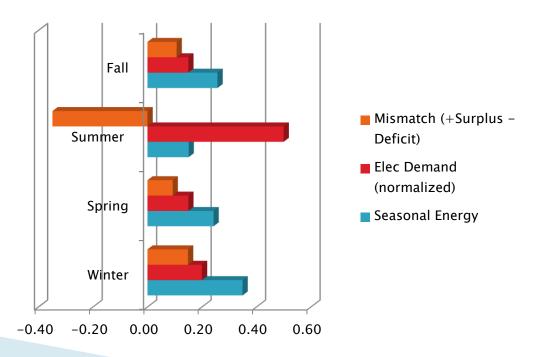
- Conversion from Carbon to Hydrogen
- Use of Vast Domestic Renewable Clean Energy
- Use of Breakthrough Technologies Developed Within Delmarva
- Recycle Used Materials (Plastics, Metals, Etc.)
- Finance All Projects Within Borders
 - Energy Development Bonds and Equity Shares Sold To Citizens
 - U.S. Loan Guarantees Acceptable But Not Necessary Beyond First Generation Projects


Hydrogen Technology

- Hydrogen Energy Carrier
- Conversion of Air, Water, and Renewable Power to Ammonia
- Offshore Floating Wind Platforms
- Solid State Ammonia Synthesis
- Ammonia Pipelines To Distribute Hydrogen Throughout Region
- New Hydrogen Combustion and Conversion Technologies

Sustainable Life

- 50 Gigawatts of Power at Sea Off Delmarva Coast (Average 8 m/s annual winds @ 90m)
- Some Power Sold to TVA and DoD for Greening Their Networks
- Use of Ammonia Fuel Cells
 - 1kW to 10MW for Homes and Transportation
- Use of Ammonia for Industry and Utilities
 - Gas and Steam Turbines for Large Power Plants and Clean Cogeneration


How Much Power Is There?

Matching the Load Seasonal Analysis

	Winter	Spring	Summer	Fall
Seasonal Energy	0.35	0.24	0.15	0.26
Elec Demand (normalized)	0.20	0.15	0.50	0.15
Mismatch (+Surplus -Deficit)	0.15	0.09	-0.35	0.11

35% Mismatch of product and demand!

Financing Of Eac	ch Unit					
Analysis				Amount financed		\$25,000,000
Assumptions:				Annual interest (e.	g., 8.25)	5.2
\$20 million per 8MW Power				Duration of loan (i	n years)	15
\$3 million per 15MT/Day SS Production Unit	SAS NH3			Start date of loan		1-Jan-15
\$1 million per Storage and						
\$1 million per 300 MT/day I facility	Reverse Osmos	is Seawater-Fre	esh water	Monthly payments		200,312.79
7 Unit Clusters				Total number of pa	ayments	180
20% Equity at 10% dividen Convertible Stock	d on			Yearly principal +	interest	2,403,753.43
80% Debt at 4% Interest						
15 year loan life				Principal amount		25,000,000.00
				Finance charges		11,056,301.39
				Total cost		36,056,301.39

Product Mix Pricing

Production Pro Pricing Per Uni					
Using Product Mix				Electricity Only	
Product	Amount	Price	Revenue		
Ammonia (MT/yr)	4000	400	\$1,600,000	0	0
Oxygen (MT/yr)	100	500	\$50,000	0	0
Fresh Water (MT/yr)	1000000	1	\$1,000,000	0	0
Electric Power (MWh)	9000	40		36000	\$1,440,000
Total			\$3,010,000		\$1,440,000

Profit & Loss			
	Per Unit	Per Cluster	100 Clusters
Deployed Capital	\$25,000,000	\$175,000,000	\$17,500,000,000
Revenue	\$3,010,000	\$21,070,000	\$2,107,000,000
O&M	\$25,000	\$175,000	\$17,500,000
G&A	\$75,000	\$525,000	\$52,500,000
Loan P&I	\$2,403,744	\$16,826,208	\$1,682,620,800
Insurance	\$250,000	\$1,750,000	\$175,000,000
Gross P (L)	\$256,256	\$1,793,792	\$179,379,200
Taxes	\$76,877	\$538,138	\$53,813,760
Net Profit (Loss)	\$179,379	\$1,255,654	\$125,565,440
Annual Payments to:			
Equity Partners	\$179,379	\$1,255,654	\$125,565,440
Debt Holders	\$1,479,227	\$10,354,590	\$1,035,458,954
Convertible Stock Holders	\$924,517	\$6,471,618	\$647,161,846
Insurance Co.*	\$250,000	\$1,750,000	\$175,000,000
State & Federal Govt.			
Tax on project	\$76,877	\$538,138	\$53,813,760
Tax on participants	\$800,000	\$5,600,000	\$560,000,000
*Note: Insurance sufficient to	cover loss of 0.5% of assets	yearly e.g., 50 units over 1	15 years

Enormous Annual Export Potential

- ▶ 100 Million Tons of Ammonia
- 10 GW+ of Power to Eastern Grid
- ▶ 1000s Wind Power Turbines For Export
- 1000s Floating Ocean Energy Islands For Export
- \$100+ Billion Annual Income for Delmarva From Renewable Energy Production

Key Innovations

- Polyimide-Based Wind Turbine Blades and Integrated Generators Inside Hubs
- Hydrogen Transport Based On Ammonia
- New Classes of Ammonia Burning Engines and Fuel Cells
- Solid State Ammonia Synthesis
 - 50% More Efficient Than Any Other Method
 - Eliminates Electrolysis of Water
- Next Generation Floating Energy Islands
 - Phase Over to Ocean Thermal Energy Conversion As Wind Resources Are Saturated

Resource Requirements

- \$100 Billion New Capital In 10 Years
- Reopen Large Shipyards for Manufacturing Floating Islands
- ▶ 10 Billion Tons of Concrete
- ▶ 10 Million Tons of Steel
- Other Metals (Al, Cu, etc.) Captured from Recycle
- Recycled Plastics Used to Make Polyimides
- New Wind Turbine, Generator, Engine and Fuel Cell Manufacturing Plants
- New Pipelines to Feed Ammonia to End Users
- Ammonia Fertilizer Distributed Directly to Farms

Fresh Water Production

- Floating Platforms Convert Sea Water to Fresh Water for Making Ammonia and Surplus for Thirsty Cities
- Products (Ammonia, Water, Oxygen, and Power) Optimized for Maximum Profit
- Baseload Power Can Be Shipped to Shore By Cable or Generated By Fuel Cells From Ammonia
- Fresh Water Also Created By Fuel Cells
- Ships Carry Ammonia and Water to Ports for Distribution Worldwide

Some Inventions Of Note

- RP-46 and RP-50 Polyimides From NASA Langley Research Center (Ruth Pater)
- Collier Research HyperSizer Wind Turbine Design Software
- Solid State Ammonia Synthesis (Jason Ganley, et.al.)
- Hydrogen Hub (John Holbrook, et.al.)
- Advanced Ammonia Engines (Ted Hollinger)
- Advanced Ammonia Fuel Cells (Nigel Sammes, et.al.)
- System Design Improvements (Paul Curto, et.al.)

What Are We Waiting For?

- The Decision Is Yours
- Do You Want A Future For Us and Our Children?
 - Clean
 - Renewable
 - Sustainable
 - Economic
 - Prosperous

CCLLC

Dr. Paul A. Curto CEO, Chief Technologist Potomac, MD 20854 (301)424-8554 paul20854@gmail.com

MD Offshore Seasonal Variations

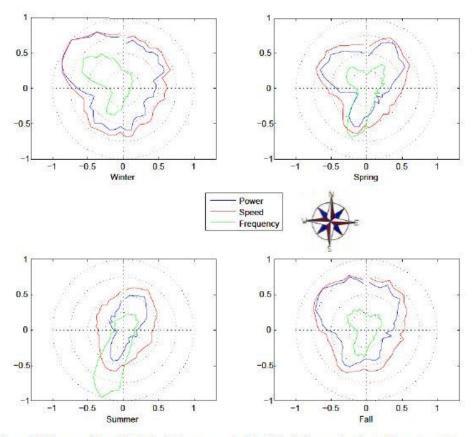
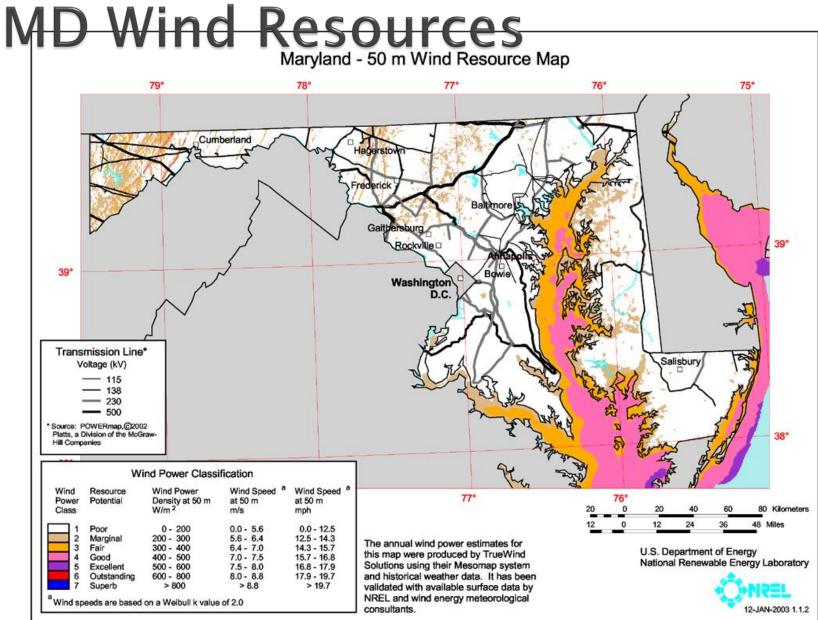
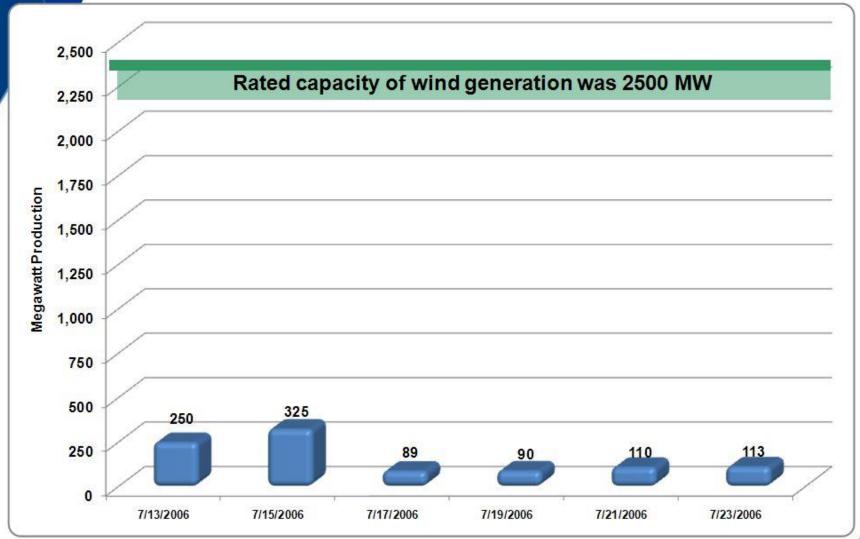
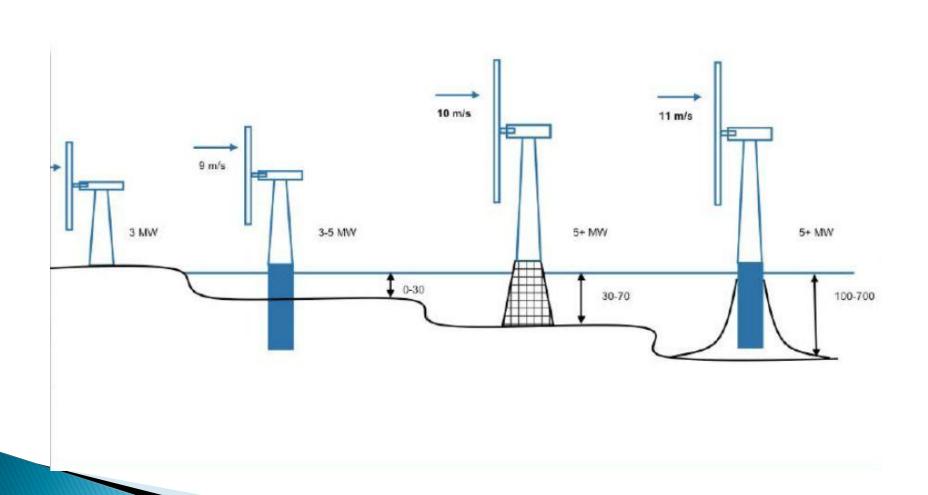
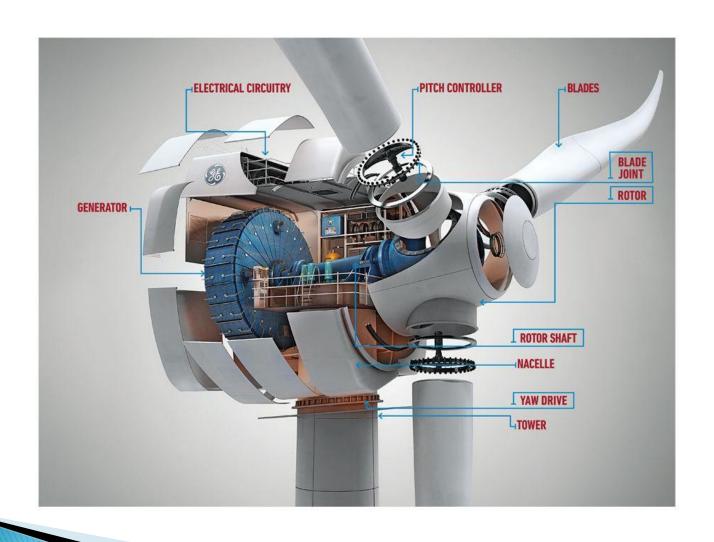




Figure 14. Seasonal Rose Plots depicting power, hub height wind speed, and wind frequency by direction. The values are normalized by the maximum yearly values.



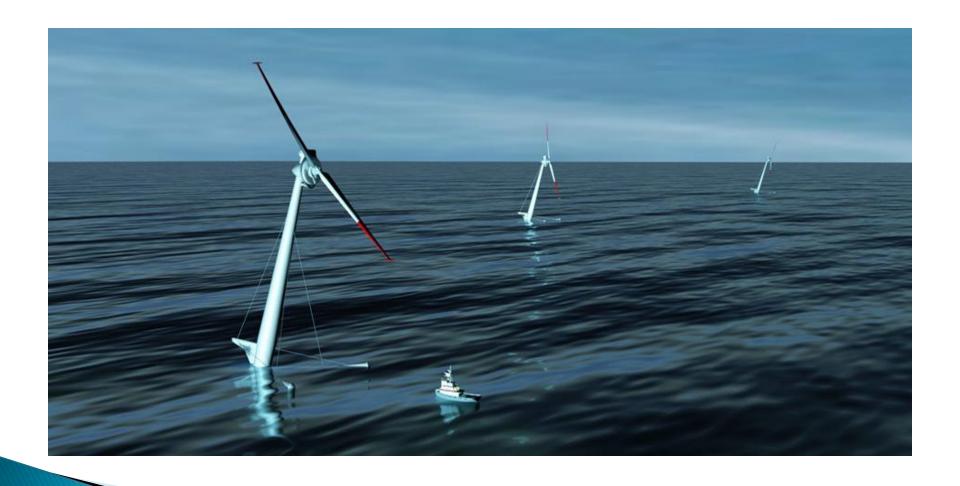
Wind Generation's Performance During 2006 California Heat Wave



^{*} Adapted and estimated from Dixon, U.S. DOE (2006)

Offshore Wind Machine Designs

GE 4MW Offshore Wind Turbine

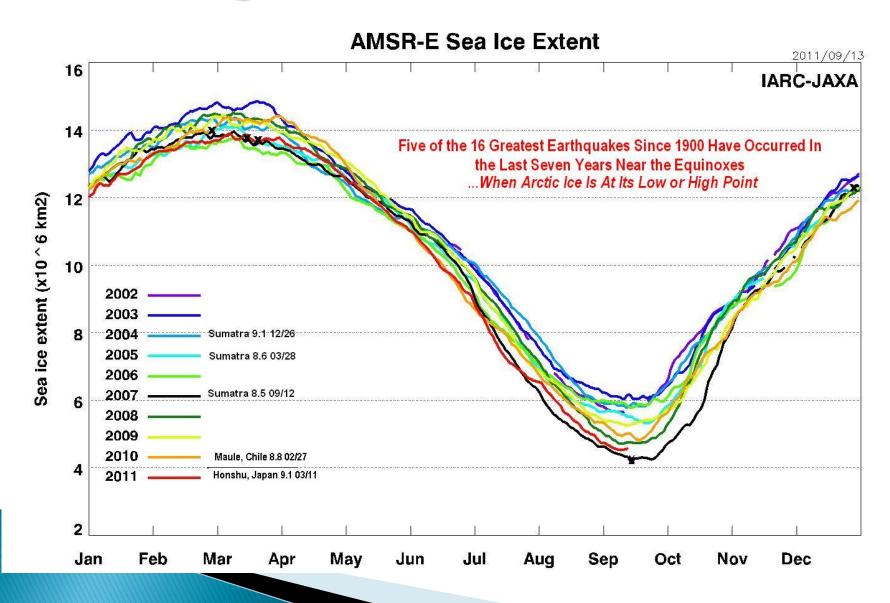


C-Power 5MW Offshore Wind Turbine

Nautica Windpower

Load-Matched Product Mix

1/2	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N		0
1	Product Mix Analysis fo	r 8MW Of	fshore \	Wind Ma	chine											
2	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yearly	Value	2
3	Avg Vel (m/s)	10.3	9.5	8.9	8.5	7.2	6.6	6.4	6.5	8.1	8.4	8.9	9.8			
4	Energy Factor	106.09	90.25	79.21	72.25	51.84	43.56	40.96	42.25	65.61	70.56	79.21	96.04	837.83		
5	Mon Avg Energy	0.126625	0.107719	0.094542	0.086235	0.061874	0.051991	0.048888	0.050428	0.078309	0.084218	0.094542	0.114629	1		
6	Seasonal Energy	0.348973			0.242651			0.151308			0.257069			1		
7	AEP=36 GWH															
8	Monthly Generation	4.55849	3.877875	3.403507	3.104448	2.227469	1.871692	1.759975	1.815404	2.81914	3.031832	3.403507	4.126661	36		
9	Value (\$1000s)	381.1404	324.2334	284.571	259.5664	186.2411	156.4943	147.1535	151.788	235.7114	253.4949	284.571	345.0347	3010		
10																
11	With Optimized Generation Mix															
12	Ammonia (MT)	506.4989	430.875	378.1674	344.9387	247.4965	207.9658	195.5528	201.7116	313.2378	336.8702	378.1674	458.5178	4000	\$	1,600,000
13	Oxygen (MT)	12.66247	10.77187	9.454185	8.623468	6.187413	5.199145	4.88882	5.042789	7.830944	8.421756	9.454185	11.46295	100	\$	50,000
14	Water (MT)	95285.11	81058.36	71142.74	64891.59	46560.28	39123.57	36788.37	37946.99	58927.86	63373.72	71142.74	86258.67	1000000	\$	1,000,000
15	Electricity (MWH)	1139.623	969.4687	850.8767	776.1121	556.8671	467.9231	439.9938	453.851	704.785	757.9581	850.8767	1031.665	9000	\$	360,000
16	ACCURATE SPEC													Total	\$	3,010,000
17	The state of the s															
18	All Electricity (MWH)	4558.49	3877.875	3403.507	3104.448	2227.469	1871.692	1759.975	1815.404	2819.14	3031.832	3403.507	4126.661	36000	\$	1,440,000
19	pontuning in the construction above the many perment of the CONST															
20	All Ammonia (MT)	701.3062	596.5962	523.6164	477.6074	342.6875	287.9527	270.7654	279.2929	433.7138	466.4357	523.6164	634.8709	5538.46	\$	2,215,385


Largest Earthquakes in the World Since 1900

USGS National Earthquake Information Center

Yet Another Concern – Link Between Global Warming and Megaquakes

	Location	Date UTC	Magnitude	Lat.	Long.	Reference
1.	Chile	1960 05 22	9.5	-38.29	-73.05	Kanamori, 1977
2.	Prince William Sound, Alaska	1964 03 28	9.2	61.02	-147.65	Kanamori, 1977
3.	Off the West Coast of Northern Sumatra	2004 12 26	9.1	3.30	95.78	Park et al., 2005
4.	Near the East Coast of Honshu, Japan	2011 03 11	9.0	38.322	142.369	PDE
5.	<u>Kamchatka</u>	1952 11 04	9.0	52.76	160.06	Kanamori, 1977
6.	Offshore Maule, Chile	2010 02 27	8.8	-35.846	-72.719	PDE
7.	Off the Coast of Ecuador	1906 01 31	8.8	1.0	-81.5	Kanamori, 1977
8.	Rat Islands, Alaska	1965 02 04	8.7	51.21	178.50	Kanamori, 1977
9.	Northern Sumatra, Indonesia	2005 03 28	8.6	2.08	97.01	PDE
10.	Assam - Tibet	1950 08 15	8.6	28.5	96.5	Kanamori, 1977
11.	Andreanof Islands, Alaska	1957 03 09	8.6	51.56	-175.39	Johnson et al., 1994
12.	Southern Sumatra, Indonesia	2007 09 12	8.5	-4.438	101.367	PDE
13.	Banda Sea, Indonesia	1938 02 01	8.5	-5.05	131.62	Okal and Reymond, 2003
14.	Kamchatka	1923 02 03	8.5	54.0	161.0	Kanamori, 1988
15.	Chile-Argentina Border	1922 11 11	8.5	-28.55	-70.50	Kanamori, 1977
16.	Kuril Islands	1963 10 13	8.5	44.9	149.6	Kanamori, 1977

Troubling Data

