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Global warming



http://www.me.go.kr/inform/dev/dev04_04.jsp?id=life_03_04&cate=&dirinfo=&key=subject&search=&search_regdate_s=&search_regdate_e=&order=&desc=asc&pg=1&mode=view&idx=10925
http://www.me.go.kr/inform/dev/dev04_04.jsp?id=life_03_04&cate=&dirinfo=&key=subject&search=&search_regdate_s=&search_regdate_e=&order=&desc=asc&pg=4&mode=view&idx=10896
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CO, emissions in Korea

Korea Metrological Administration report (2011): the
average amount of CO, at the national air monitoring
station in Anmyeondo, Chungcheong Province, in
2010 was 394.5 ppm:

+ Korea's CO, level has been on the rise for eleven straight
years since 1999 when the amount was 370.2 ppm.

+ The U.S. Center for Global Development (2007): Korea ranked
10th among the world's greenhouse gas emitters by emitting
185 million tons of such gases annually.

+ The average temperature in Korea has risen by 1.5 degrees
over the last 100 years.
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The Kyoto Protocol in 1997:
+ Under the second phase of the Protocol, Korea may be
required to reduce greenhouse gas emissions between
2013 and 2017.

+ In order to reduce 5% of greenhouse gas emissions in
1995, the estimated cost is 8 billion US dollars.
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Hydrogen (H,)

Difficulties of transport/storage
Pipelines: infrastructure needed

No transport problem if hydrocarbons used
But CO,/CO emitted



Liguefied @ 370 psi,
similar to LPG

Ammonia (NH,)

O

O

No CO,/CO emissions

O
O

Low T catalytic or
no catalytic reforming

®

Reasonable
production costs
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%%8; Ammonia (NH,)
Fuel/system er (%) $100 km™! Range (km)
Gasoline/ICE 24 6.06 825
CNG/ICE 28 6.84 292
LPG/ICE 28 5.10 531
Methanol/reforming + fuel-cell 33 0.22 376
H, metal hydrides/fuel-cell 40 4.40 142
NH;/direct ICE 44 1.57 592
NH;/Th decomp, ICE 28 2.38 380
NH3/Th decomp Sep, ICE 31 2.15 420
NH;/direct FC 44 1.52 597
NH3/Th. decomp + Sep, FC 46 1.45 624
NH3/electrolysis 20 3.33 271

+ Zamfirescu C, Dincer I, “Using ammonia as a sustainable fuel,” J Power Sources

185 (2008), 459-465.
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Ammonia in Korea

No earlier works for use of

ammonia as a fuel

= Ammonia has been used for various fields during the last 50
years in Korea:
+ Fertilizers, refrigerants, catalysts and process chemicals.
+ Safety issues associated with handling of ammonia resolved.
+ Related regulations: industrial safety and health regulations and
high pressure gas safety regulations.

= Ammonia is cheaper than other fuels; however, 100%
imported due to low demand in Korea.
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Technological challenges to overcome

Micro-combustor:

+ Burning temperature high enough for combustion stability
and performance but suppressing NO, formation

+ Heat losses quenching flames
+ Ignition (delay)
+ Heat recirculation concept and H, addition applied

Micro-reformer:

+ Uniform and steady heating: residence time and array
+ Erosive to some materials such as metals

Combustor-reformer integrated system:

+ Effective heat transfer between a combustor and a reformer
+ Simple structure with heat recirculation




Burning ammonia - summary
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Fundamental characteristics: spherical flames
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The lower stability limits due to heat losses, while the upper

stability limits due to insufficient residence times of injected
mixture jet.

Reduction of the stability limits with NH; substitution in H,/air

flames.

Opposite tendencies of the upper stability limits with and
without the coflow.
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Fundamental characteristics: burner-
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Ammonia substitution enhances the NO, formation in general,
however, the NO, emission index is almost constant with the
enhanced ammonla substitution.

At fuel-rich conditions, the NO, emission index is reduced with
Increasing burner exit velocities of the Injected mixtures.




Fundamental characteristics: counterflow
nonpremixed flames
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Species mole fraction

8 Fundamental characteristics: counterflow
=t nonpremixed flames
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Ammonia is all capable to significantly reduce the high-stretch
extinction limits, the maximum flame temperature and the
concentration of light radicals with ammonia substitution in
hydrogen/air flames.

The remarkable reduction of temperature with NH; substitution at low
strain rates is observed due to the effect of the less reactive NH
substitution, while the insignificant reduction of temperature at f‘nigh
strain rates is observed due to the effect of pure stretch regardless of
NH; substitution.

Chemical effects (rather than thermal effects) of NH; substitution
flame structure are dominant.
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Design of micro-combustors

In order to satisfy the primary requirements for designing

the micro-combustor integrated with a micro reforming
system (stable burning in the small confinement, maximum
heat transfer through the walls and uniform temperature
distribution along the wall surface), the micro-combustor
that is simply cylindrical to be easily fabricated but two-

staged, expanding downstream was designed.
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CS Design of micro-combustors

Preliminary tests of the two-staged micro-combustor for
micro reforming systems were conducted for a methanol-
steam reforming system the reforming characteristics of
which are relatively well known:

+ Improved performance compared to earlier micro methanol-
steam reforming systems.

+ But gaseous ammonia reforming does not need a micro-
evaporator.

Micro reforming sytem Table 1 - Optimized operating conditions and
I ) performance of micro reforming system.
7 V] cotdtrap /| _Thermally Operation/performance parameters Values
| insulated
|_ _‘ Thermocouple | Materials Stainless steel (55304)
C

— = Equivalence ratio of pre-mixed 1.0
propane-air flame (¢)
G Bubble 3 Micro-combustor inlet velocity (V) 0.78 m/s
meter @ Molar ratio of water to methanol (S/C) 1.38
\ Feed rate of methanol-water 0.10 mV/min
mixture (rg)
Computer system Syringe pump Production rate of reformed gas () 53.6 ml/min =69 W
(based on LHV)
Conversion rate of methanol (r) 97.5%
Fuel tank l:(/l DT<} — )OC Mixing chamber Carbon monoxide emissions ([COJ) 6.7 ppm
Mass flow controller Overall system efficiency (n) 39.7%




7o) Design of micro-combustors

« A micro-combustor that burns gaseous fuel-air mixtures as
a heat source has been designed:

+ A cylinder with an expanded exhaust outlet that facilitates

ignition and an annular-type shield that adopts a heat-
recirculation concept.

0.5 dy=70 t,=05

C,H,-Air Premixed Combustion of T (K)
y=10andt,=0.5mm@ NTP:
¢ =1.0and V=33 m/s

00000000000000000000000000

N

'
N

Radial distance, r (mm)
o

bt
Axial distance, x (mm)



Reforming ammonia



Objectives

Study the potential of using NH; as a clean fuel,
particularly for portable H,-generation systems:

+ Determine a basic configuration of the micro-reformer system,
including the heat-recirculating micro-combustor that can
feasibly control stable burning and enhance the overall system
efficiency and using the catalytic reforming process.

+ Observe the effects of operating parameters (the feed rate of
NH; and the micro-combustor inlet velocity of fuel-air mixtures)
on the performance of the micro-reformer system (the
production rate of reformed gas, the conversion rate of NH; and
the overall system efficiency).

+ Observe the effects of varying the micro-reformer catalyst
materials on the performance of the micro-reformer system,
considering the cost-effective candidates.

+ ldentify the optimized design and operating conditions from the
observations.
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Experimental methods (C;Hg-air)

Thermocouple

_

Computer system

Mixing
chamber

XX

Test micro reforming system (SS304)

Gaseous fuel-air mixture supply
system (MFCs: 0-2,000 sccm,
accuracy of £1.0% of full-scale)

Gaseous NH; feed system (MFCs)

Bubble meter and gas
chromatography (Agilent 6890)

Thermocouples (K-type)

Micro-reformer catalysts: Ru
(baseline), Ir and Ni/SiO,/Al,O4

Test conditions (micro-combustor):
e V=26-41m/s, ¢=1.0
¢ C3Hg @ NTP (micro-combustor)
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v - Experimental methods (NH,-H,-air)

Thermocouples Test micro reforming system (SS304)

Gaseous sccm, accuracy of +£1.0% of
fuel-air mixture supply system
(MFCs: 0-2,000 full-scale)

Micro reforming sytem

— Gaseous NH; feed system (MFCs)
Compusrsysem | ge || PO Bubble meter and gas
chromatography (Agilent 6890)
N chamber Thermocouples (K-type)
m — —— XX Micro-reformer catalysts: Ru
— B Test conditions:
ek e V=15-3.0m/s, =0.8-1.25
Air >:3€_9 I ! * Xh= 0.3-0.5
= + NH,/H2@ NTP (micro-combustor)
| e M, =10 ml/min (micro-reformer)
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The conversion rate increases
with increasing V until V = 3.1
m/s for Ir and Ru.

For Ni/SiO,/Al,0, I increases
with increasing Vup toV =4.1
m/s.

The maximum value of I for Ir
and Ru is 98.0 % at M; = 5.0-
10.0 ml/min and V = 3.1-4.1
m/s.

Conversion rates of NH, (%)

Conversion rate of ammonia
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The maximum overall system
efficiency is observed at M; =
10.0 ml/min and V = 3.1 m/s:

o M;<10.0 mi/min: M_is too
small.

o M >10.0 ml/min: not enough
residence time.

The overall system efficiency

for Ni/SIO,/Al,O41s lower than

that for Ru and Ir under all the
present conditions.

The maximum overall system
efficiency is 13.7%.

Overall system efficiency (%)

Overall system efficiency
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Z P
15§ 7
A
-
a
10
V=23.1mls
h
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10
™ |
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b .
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0 10 20 30 40
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For Ir and Ru, X3 decreases
with increasing V until V =3.1
m/s.

For Ni/SiO,/Al,O4, higher
temperature condition in the
micro-reformer (and hence in
the micro-combustor) than that
for Ir and Ru is needed.

The minimum value of
unreacted NH; mole fraction
Xynz = 0.01 is observed at M; =
5.0-10.0 ml/min and V = 3.1-3.7
m/s.

Unreacted NHJ mole fraction

Unreacted ammonia mole fraction
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@ g Optimized condition (C;Hg-air)
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Operation/performance parameters Values

Materials Stainless steel (SS304)
Catalyst

Ruthenium (Ru)

Equivalence ratio of premixed propane-air flame (¢)

1.0
Micro-combustor inlet velocity (V) 3.1m/s
Feed rate of ammonia (m, ) 10.0 ml/min

Production rate of reformed gas ( mr) 20.1 ml/min = 5.4 W (based on LHV)

Conversion rate of ammonia ( ¢ ) 98.0%

Unreacted ammonia mole fraction (Xys) 0.01

Overall system efficiency (») 13.7%
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gfroduction rate of reformed gas: ¢ = 1.0 (NH;-H,-alir)

NH-H_-Air Premixed Flames @ NTP: ¢= 1.00
20 o ° 8 ‘B

Production rate of reformed gas (ml/min)

o |
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" 1 " 1 " 1 M 1 N 1
1.50 1.55 1.60 1.65 1.70 1.75
Inlet Velocity (m/s)

M. increases with increasing V until a certain condition (which
decreases with increasing X,) due to the increased amount of the
supplied fuel and then becomes almost constant since flame is
stabilized in the micro-combustor, providing the appropriate
amount of heat into the micro-reformer regardless of varying

The maximum M, = 20 ml/min.

V.
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Conversion rate of ammonia: ¢ = 1.0

T T T T T T T T T T
- NH.-H -Air Premixed Flames @ NTP: ¢=1.00
X 100 °° -
-’ o f ]
Z
°
= 80} 1
N
= °
= |
= 60k o x,  Symbols -
o
@ . 0.3 u
§ 0.5 )
= n
6 g " Catalyst: Ru
1 2 1 2 1 2 1 1 1
1.50 1.55 1.60 1.65 1.70 1.75
Inlet Velocity (m/s)

A tendency similar to M, is observed for .

The maximum f = 97%.




Unreacted ammonia mole fraction: ¢ = 1.0
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Xyn3 decreases with increasing V.

The minimum X3 = 0.015.
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Overall system efficiency: ¢=1.0
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n increases with increasing V until a certain condition due to the
Increased amount of the supplied fuel and then decreases since
flame is already stabilized in the micro-combustor and thus more
enhanced V results in wasting fuel input without increasing
hydrogen output.

The maximum 7 =10.4% @ V =1.63 m/s and X, = 0.5.




Production rate of reformed gas (ml/min)
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A tendency similar to
that for ¢=1.01s
observed for ¢ = 0.8 and
1.25.

The maximum m IS still

20 ml/min.

However, the Vs where
the maximum m
reaches mcrease
particularly for fuel-lean
condition.
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A tendency similar to
that for ¢=1.01s
observed for ¢ = 0.8 and
1.25.

The maximum [ is still
97%.

However, the Vs where
the maximum I
reaches increase,
particularly for fuel-lean
condition.




A tendency similar to
$=1.01Is
observed for ¢ = 0.8 and

The minimum X3 IS

However, the Vs where
the minimum Xy
reaches increase,
particularly for fuel-lean
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Overall system efficiency (%)

NH_-H_-Air Premixed Flames @ NTP
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¢ OQverall system efficiency: ¢ = 0.8-1.25

A tendency similar to
that for ¢=1.01s
observed for ¢ = 0.8 and
1.25.

However, nis somewhat
reduced, particularly for
fuel-rich condition.

Also, the Vs where the
maximum n reaches
Increase.
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@ Optimized condition (NH5-H,-air)

Operation/performance parameters

Values

Materials
Catalyst
Equivalence ratio of premixed NH;-H,-air flame (¢)
Micro-combustor inlet velocity (V)
Mole fraction of H, in fuel gas (x;,)
Feed rate of ammonia ( M;)
Production rate of reformed gas ( m, )
Conversion rate of ammonia ( 1)
Unreacted ammonia mole fraction (Xyy3)

Overall system efficiency (#)

Stainless steel (SS304)
Ruthenium (Ru)

1.00

1.63 m/s
0.5

10.0 ml/min
20.1 ml/min = 5.4 W (based on LHV)
97.0%
0.015

10.4%




: Recirculation of reformed gas

Thermocouples

Micro reforming sytem ApprOXImater 48_52%
of the total amount of
—| | the reformed gas
S8 without the
Computer system GC Bl‘btble recircu I atl on.

Mixing The ammonia
T N charmber conversion rate of
%WT XX 97.0% was still
measured.

Ammonia )ﬁ [ | ] E _ l
tank ﬁj
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Stably working.
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An annulus-type micro reforming system which consists of a
heat-recirculating micro-combustor as a heat source and a
micro-reformer surrounding the micro-combustor has
successfully produced hydrogen, using ammonia as a fuel for
both reforming and burning.

Summary

4//'3}\3%\%

An optimized feed rate of ammonia was determined by
preliminary tests using propane as a fuel for the micro-
combustor (10.0 mi/min).

The production rate of reformed gas and the conversion rate
of ammonia increase with the increasing inlet velocity of
mixtures V until a certain condition since the amount of the
supplied fuel increases, intensifying burning in the micro-
combustor and enhancing heat transfer into the micro-
reformer, and then becomes almost constant since flame is
stabilized in the micro- -combustor, providing the appropriate
amount of heat into the micro-reformer regardless of varying
V.
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8 Summary

“?“’“ﬁ"’ﬁﬁi'he performance of the micro reforming system is enhanced
with the increasing amount of substituted hydrogen.

Al /smT\\\A

Ru seems to be the most cost-effective among the catalysts
considered in the present investigation.

The overall system efficiency increases with increasing V
until a certain condition due to the increased amount of the
supplied fuel and then decreases since flame is already
stabilized in the micro-combustor and thus more enhanced V

results in wasting fuel input without increasing hydrogen
output.

Stoichiometric hydrogen-substituted ammonia-air mixtures
provide the best performance of the micro reforming system.

Under optimized operating conditions, an overall system
efficiency of 10.4% was obtained.
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Concluding remarks

Based on the fundamental characteristics of ammonia-
fueled flames that were obtained from outwardly-
propagating, burner-stabilized and counterflow flame
configurations, a micro reforming system integrated with a
micro-combustor that reforms and burns ammonia has
been successfully designed.

Under optimized operating conditions, the micro reforming
system produces 5.4 W (based on lower heating value) of
hydrogen with a conversion rate of 97.0% and an overall
system efficiency of 10.4%.

This supports the potential of using ammonia as a clean
fuel for both reforming and burning in micro reforming
systems.




Further study - applications



-\ ¢  Thermophotovoltaic (TPV) devices

A further study on an ammonia-fueled micro thermo-
photovoltaic system is also conducted to evaluate the
potential of using ammonia in micro power generation

systems.
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