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Motivation for NH3 

Why use NH3 for heating and power when cheap 

natural gas is available? 

Å60% of the Northeast U.S. heated with fuel oil 

ÅNH3 for remote heating and power  

(to replace propane on farms, mountain/rural communities, 

cell towers, etc.) 

ÅNH3 can be used to sequester CO2 and makes more sense 

to transport than natural gas 

ÅNH3 can come from fossil fuels, biomass, wind, nuclear, etc. 

ÅHigh thermal efficiency of gas turbines, professional users 
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Challenges 

ÅNH3 is technically non-flammable (in liquid form), has high auto-

ignition temp (630 C), and low reactivity. 
(Flame speed of NH3 ~ 6-8 cm/s, CH4 ~ 40 cm/s, H2 ~ 140-150 cm/s) 

 

ÅNH3 is a source of NOx in flames. 

 

ÅNH3 is a potential contaminant, especially for marine life (e.g., 

97% efficiency may not be enough) 

 

ÅModern challenge is near-zero pollutant emissions  
(actually an advantage for NH3 if CO2 is a pollutant) 
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Ammonia swirl-stabilized flame study (40 KW) 
 

Å H2/NH3, CH4/NH3 mixtures 

Å Strategies for 100% NH3 combustion & low emissions 

 

Study of NH3 Chemistry 
 

Å Flame speed analysis 

Å Flame structure 

Å NO chemistry 
 

Scope and Objectives 
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ÅDimensions &  heating capacity 

ÅEquipped with thermocouple & 

pressure transducers. 

ÅCustom built swirl-plate stabilizer. 

ÅEasily movable fuel nozzle. 

ÅLaser diagnostics accessible flame. 

ÅExhaust section:  Chilled water-line 

& Sampling Locations with a optical 

accessible window. 

 

ÅKey feature: Self-sustained Heat 

Exchanger.  

 
 

 

 

Domestic Oil Heating 

Furnace (40 KW) 

Swirl-Stabilized Turbulent Flame  
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Experimental Set-Up 
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Combustion Optimization 
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Flame Comparisons 

Fuel Oil 

(28 kW) 

34% NH3 by Energy 

in CH4 (5 kW) 

60% NH3 by Energy 

in H2 (15 KW) 
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Study of Natural Gas (CH4) and Hydrogen (H2) 

Replacement by NH3 

Effects of: 

1.      Preheated Air Temperature 

2.      Equivalence Ratio      

3.      Heat-Rate 

4.      Different Fuel Nozzle Positions 

5.      Swirl Geometries 

6.      Burner Configurations 

 

Å  

Experimental Procedure 
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Results: CH4/NH3 Fuel mixture 

NH3 limited without a flame holder, but emissions sensitive to flame holder. 

CH4/NH3/Air @ Tair = 300 C & Phi = 0.95, HR ~ 16 KW  
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CH4/NH3/Air @ Tair = 300 C, Q_total ~ 560 slpm, HR ~ 16 KW  
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Results: CH4/NH3 Fuel mixture 

NH3 limited without a flame holder, but emissions sensitive to flame holder. 
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CH4/NH3/Air @ Tair = 300 C & Phi = 0.95, HR ~ 16 KW  
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Results: CH4/NH3 Fuel mixture 
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H2/NH3/Air @ Tair = 300 C & Phi = 0.95, HR ~ 15 KW  

H2/NH3 Fuel mixture 

ÅUniform temperature & low NOx with Flame-Holder. 
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H2/NH3/Air , Tair = 300 C , Q_total ~ 300 slpm, E%NH 3 ~ 50  
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H2/NH3 Fuel mixture 
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H2/NH3/Air , Tair = 300 C , Q_total ~300 slpm, Equiv Ratio ~ 0.95 

Effect of Nozzle Position 

Reference condition ñCò used for all tests 
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. 
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100% NH3 Combustion? 

 

ÅRedesigned fuel nozzle 

ÅE%NH3  = 100 

ÅInlet Air 25 C 

ÅEquiv Ratio ~ 0.95 

ÅHeat Rate ~ 16.15 KW 

ÅNOx < 3-5 ppm (Ultra Low) 

Å NH3 ~  800 - 1300 ppm  

    (99.9% combustion efficiency) 
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What have we learned thus far? 

ÅYes 100% NH3 combustion is feasible 

ÅYes low emissions are feasible 

ÅMaybe ultralow emissions are feasible 

ÅAll depends on the combustor design 

Whatôs needed ? 

ÅPredictive modeling tools (next study) 

ÅOptimization of cracking and catalytic reduction 

(future work) 
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Chemical Kinetics Mechanisms 

ÅMiller and Bowman ï 19 species and 73 reactions 

ÅLindstedt ï 22 species, 97 reactions 

ÅGRI-Mech3.0 ï 53 species and 325 reactions 

ÅTian ï 84 species and 703 reactions 

ÅKonnov ï 127 species and 1207 reactions 

ÅKonnov (without C) 31 species 241 reactions 
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Experimental setup 

E%NH3 I.D 

(mm) 

0 12 4.65 

20 2 4.65 

50 2 4.65 

80 2 11.11 

Equiv ratio (ɲ )   

0.5 ï 1.1 

Average of 25 pictures 

E%NH3 = 20 at ɲ  = 1.0, for H2-NH3-Air  
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E%NH3 :  20% 50% 80% 
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Results 

E%NH 3 = 0 (pure H2-Air)  

21 



Department of Mechanical Engineering 

Knowledge. Innovation. Leadership.                         www.me.iastate.edu 

E%NH 3 = 20  

ÅOverall, Z. Tian mechanism is in better agreement. 
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E%NH 3 = 50  

ÅOverall, Z. Tian mechanism is fairly comparable with experimental data. 

23 



Department of Mechanical Engineering 

Knowledge. Innovation. Leadership.                         www.me.iastate.edu 

E%NH 3 = 80  

ÅKonnov mechanism emerged as the best-fit mechanism for higher E%NH3. 
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Effects of Radicals on Flame Speed 

ÅFree radicals O, H & OH determines flame speed for H2/NH3 mixtures. 

Submitted in Fuel, 2011 
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Results: NO mole fraction 

Sensitivity & ROP Analysis: NO & NH3 

(a) (b) 

(c) 
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