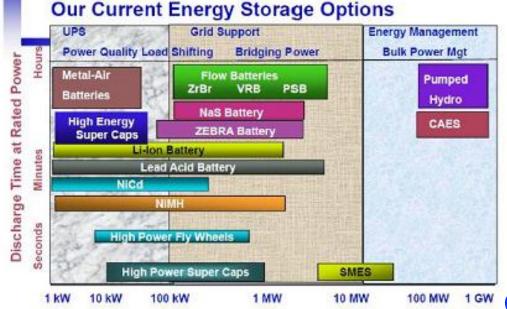

Green Energy: Electrochemical Synthesis of Ammonia For Energy Storage

James M. Boncella

Materials Physics & Applications Division Los Alamos National Laboratory Los Alamos, New Mexico 87545

LA-UR-13-27266

Energy Storage


Investigators:

Fernando Garzon	MPA-11		
Alex Mueller	C-CDE		
JoseMari Sansinena	C-CDE		
Milan Sykora	C-IIAC		
Neil Henson	T-1		
Ivana Gonzales (PD)	T-1		
Jerzy Chlistunoff	MPA-11		
Cortney Kreller (PD)	MPA-11		
Jim Boncella	MPA-11		
Rangachary Mukundan,	MPA-11		
Enrique R. Batista,	T-1		
Aaron Pierpont (PD)	T-1		
Albert Miglori,	MPA-CMMS		
Neil Tomson (PD)	MPA-11		

\$\$ LANL LDRD program - Energy Security

What are the options?

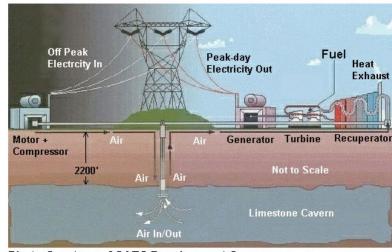


Photo Courtesy of CAES Development Company

Chemical fuels store ~ 10kWhr/liter! About 100 times more than batteries

System Power Ratings

Water, Nitrogen, CO₂ feedstocks CO₂- very dilute <400 ppm Nature chose carbon dioxide reduction instead of nitrogen reduction for energy storage because of easier biocatalysis (Structural diversity of organic compounds)

Conventional Ammonia Synthesis

Haber-Bosh process

$$N_2(g) + 3H_2(g) \xrightarrow{Fe-cat.} 2NH_3(g)$$

$$430-480^{\circ}C$$

$$10-30MPa$$

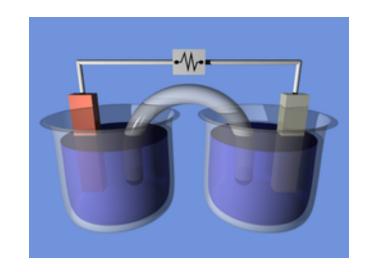
$$\Delta H = -92kJ/mol$$

Considered a landmark in het. cat. - led to three Nobel prizes (Haber 1918, Bosch 1931, Ertl 2007)

Thermodynamic limitations:

- •Gas volume decreases in rxn → high pressures needed to push equilibrium to products
- •Rxn is exothermic → efficient at low Temp, but to achieve industrially sufficient rxn rates high Temps (430-480°C) are used
- •Achieving industrially acceptable efficiencies (~70%) requires use of large-scale integrated facilities

What about Electrocatalysis?



Energy Storage in Chemical Bonds – N as a Hydrogen Carrier

$$H_2O \rightarrow H_2$$

$$CO_2 \rightarrow CH_3OH$$

$$N_2 \rightarrow NH_3$$

$$3H_2O \rightarrow 6H^+ + 6e^- + 3/2 O_2$$

 $N_2 + 6H^+ + 6e^- \rightarrow 2NH_3$

Anode - water oxidation reaction Cathode - nitrogen reduction reaction

$$2N_2 + 6H_2O \rightarrow 4NH_3 + 3O_2$$
 Overall reaction
Theoretical potential ~0 V in aqueous media at room temperature!

The problem: Kinetics, high over potentials ... better catalysts are needed

Back Conversion: Ammonia Oxidation Already Well Proven in Fuel Cells and Carnot Engines

Physical Chemistry & Materials Science

Electrolytes

- Structure-property relations for ion transport mechanisms in solid electrolytes,
- Physical chemistry and conductivity of ionic liquid/Acid salt systems
- Solubility of ammonia and influence on transport properties
- Electrocatalysis in ionic liquids, hydrogen oxidation, proton reduction,
- Electrochemical Stability Studies

Homogeneous Molecular Catalysts

• Chemical structure, reaction chemistry, charge transfer

Electrocatalyst Materials

- Surface properties, adsorption and catalysis, reaction mechanisms, electron conduction and charge transfer mechanism
- Control of particle size, nanostructure interfaces and electrode-electrolyte interactions

Experimental Plan

Synthesize and Optimize Ionic Liquid Electrolytes

- Measurement of proton transport properties, ammonia solubility
- Measurement of proton transport as a function of ammonia content
- Investigate Nitride ion formation in ionic liquids

Synthesize and Optimize Solid Proton Conductors

- Synthesis and Characterization of MP₂O₇ (M= Sn, W, Ti, Si, Ge, Ce and Zr)
- Measurement of proton transport by AC impedance spectroscopy and INS
- Theoretical Modeling of proton transport

Synthesize and Optimize M-N Electrocatalysts

- Characterize surface reaction chemistry
- Heterogeneous and electrochemical methods
- Theoretical Reaction modeling of catalysts

*Electrochemical Reactor Design and Optimization

- Design and build high pressure nitrogen reduction electrochemical reactor
- Solid Electrolyte and Liquid Electrolyte configurations
- Characterize reactor behavior

Liquid Electrolytes or Solid State Ionic Conductors for Ion Transport?

Liquid Electrolytes:

Aqueous systems: Acid or Alkaline electrolytes: water oxidizes electrodecatalyst surface inhibits reaction, narrow stability window

Organic solvents/salt systems:

acetonitrile, propylene carbonate etc: limited temperature range, stability

Molten Salts:

molten borate, hydroxide, carbonate and chloride salts: corrosive

Ionic Liquids:

Immidizolium, phosphonium etc: many electrochemical and physical properties unknown ... *Investigate ionic liquids as electrolytes for ammonia synthesis*

Solid Electrolytes:

Pervoskite oxides, beta aluminas, temperature limitations

Los Alamos Investigate metal pyrophosphates: High proton conductivity at lower T

Room Temperature Ionic Liquids

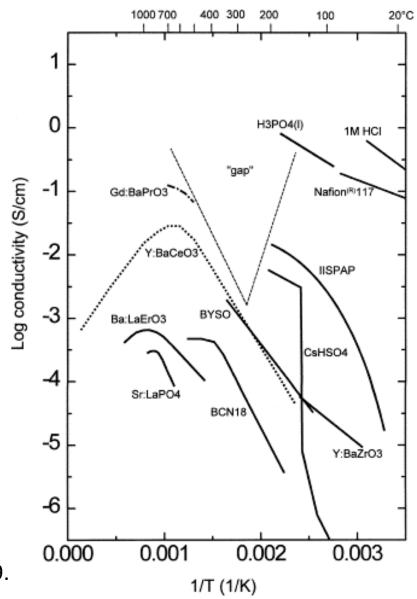
A salt consisting of an organic cation and (usually) hydrophobic anion that is a liquid at room temperature

ADVANTAGES

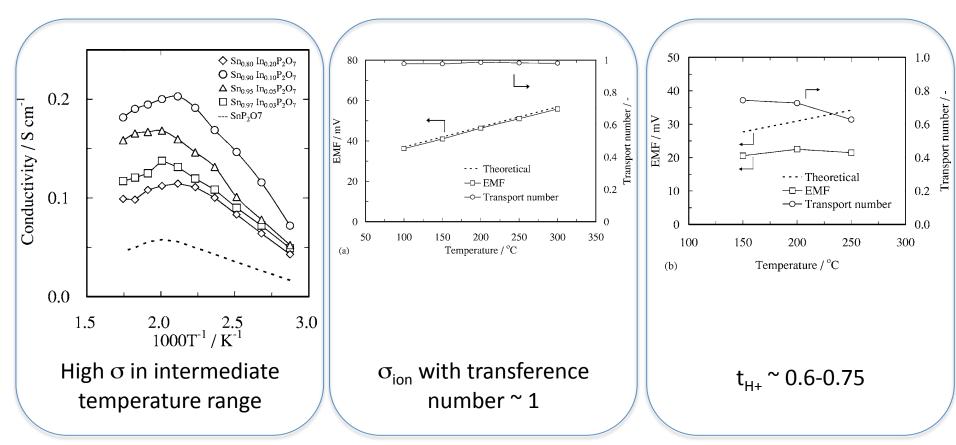
- Low melting points
- High decomposition temperatures (~200 350°C)
- High ionic conductivities (similar to 0.01M electrolyte in organic solvent)
- Extremely low volatilities (typically non-distillable)
- Large electrochemical windows when pure (5-6V)
- Viscosity decreases and conductivity increases with temperature
- Gases such as nitrogen and ammonia have reasonable to very high solubility
- Properties can be manipulated by changing cation/anion structure

DISADVANTAGES

- Room temperature viscosities are 2-4 orders of magnitude larger than organic solvents (reagent diffusion can be an issue)
- Purification the to extent necessary for echem experiments can be challenging


Ionic Liquids Being Investigated

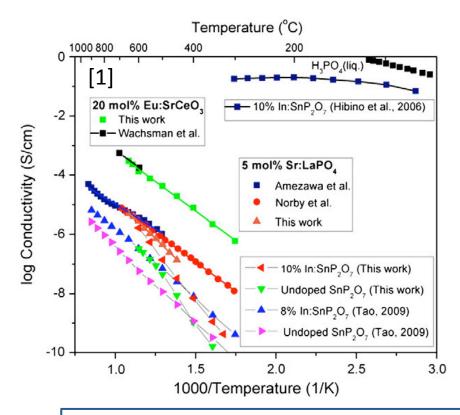
Mix and match various imidazolium, pyrrolidinium or phosphonium cations with hydrophobic anions gives a variety of RTILs having a range of properties.


Intermediate temperature solid proton conducting electrolytes

- Each type of Fuel Cell has an operating temperature regime limited by its electrolyte
 - SOFC (700-1000°C)
 - DMFC (50-120°)
 - PAFC (150-200°C)
 - PEM (50-100°C)
- High temperature operation favors kinetics and alleviates water management difficulties
- Low temperature operation favors reduced assembly cost and improved durability
- Limited electrolyte materials available to bridge technologies in intermediate temperature range (100-400°C)

Norby SSI, 124, 1999.

Intermediate Temperature Conductivity of SnP₂O₇


Doped-SnP₂O₇ materials are promising candidates for intermediate temperature proton conducting electrolytes

- [1] Nagao et al., J Electrochem Soc, 2006
- [2] Nagao et al. Electrochem Solid State Lett, 2006.

Origin of ionic conductivity in SnP₂O₇?

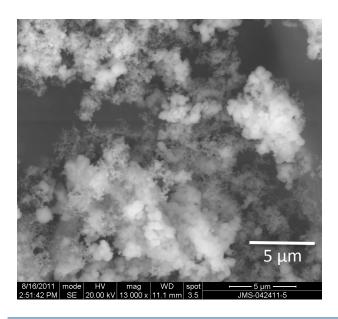
- 1. Dopant induced defects provide sites for -OH incorporation- "Perovskite-like"
- 2. Facile grain-boundary pathway enabled by residual polyphosphate phase

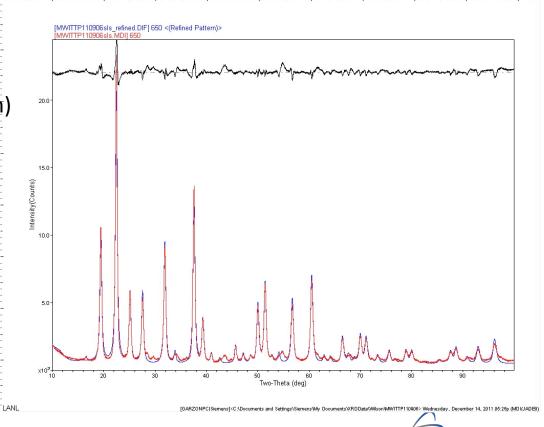
$$In_x Sn_{(1-x)}(P_2O_7)_{(1-x)}(HP_2O_7)_x$$

In³⁺ doping requires the presence of $[HP_2O_7]^{3-}$ for charge balance

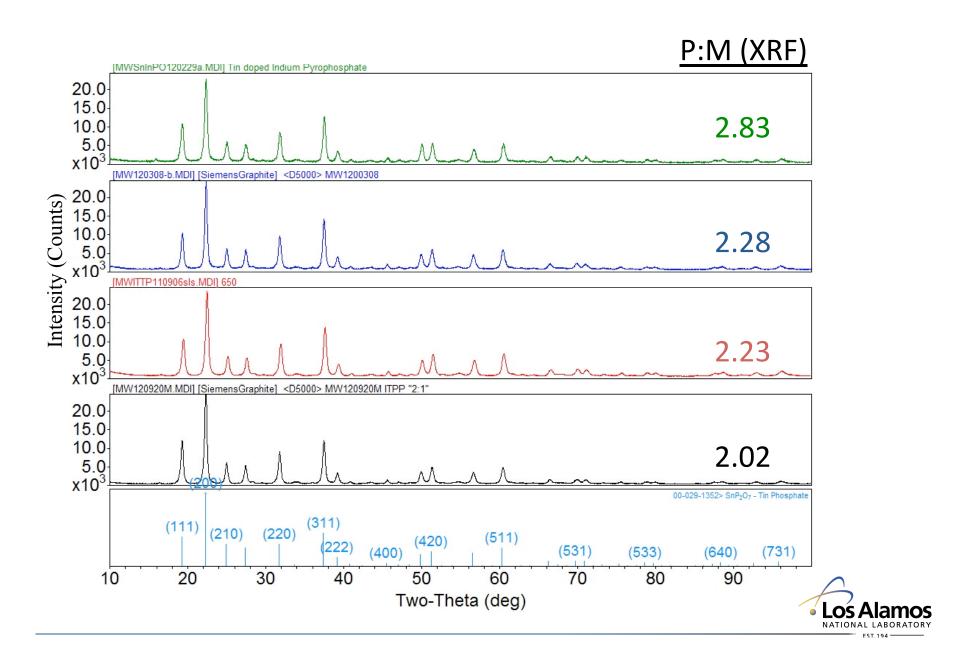
- [1] S.R Padke, C.R. Bowers, E.D. Wachsman, J.C. Nino, *Solid State Ionics*, **183** (2011)
- [2] S. Tao, Solid State Ionics, **180** (2009)
- [3] Xu, S. Tao, P. Wormald, J.T. Irvine, J Mat Chem, 20, 2010

Systematically study conductivity and stability as a function of excess P:M ratio

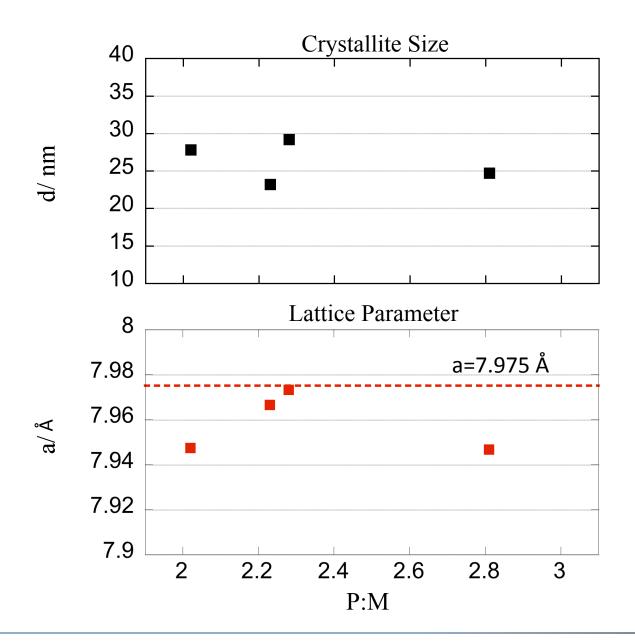

Synthesis of In_{0.1}Sn_{0.9}P₂O₇ with varying P:M


"Solution Precipitation" w/ phosphate

In, Sn chlorides, diammonium phosphate $\xrightarrow{\text{pH adj.}}$ Gel $\xrightarrow{650^{\circ}\text{C}}$ ITPP


Results:

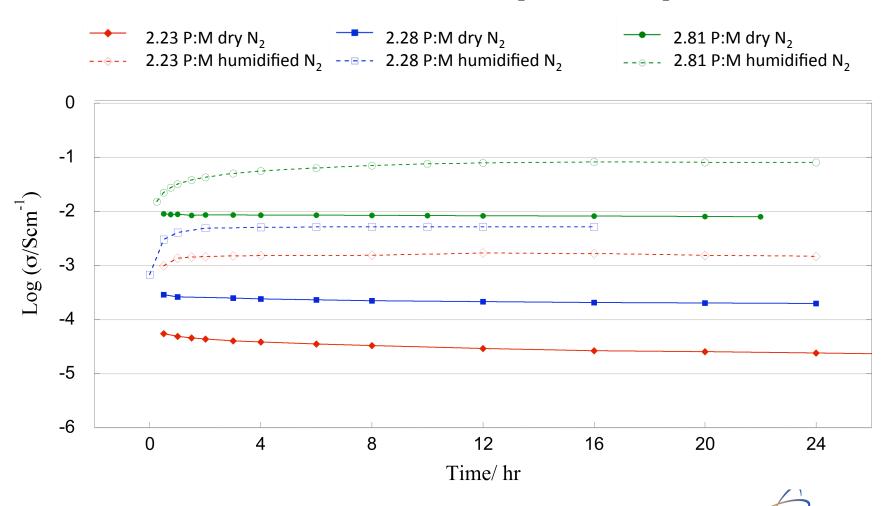
Rapid gel 650°C crystallization Small uniform crystallites (~ 20-30 nm) Control of initial stoichiometry



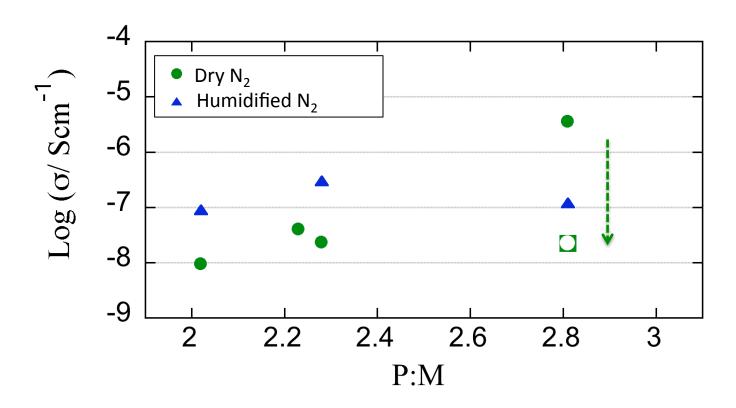
Characterization of In_{0.1}Sn_{0.9}P₂O₇ with varying P:M

Characterization of In_{0.1}Sn_{0.9}P₂O₇ with varying P:M

4-pt conductivity measurement of ITPP


- Difficult to obtain dense pellets
 - Press pellets uniaxially, then isostatically
 - $-\rho_{\text{high excess P:M}}$ (75%) > $\rho_{\text{low exess P:M}}$ (65%)
 - Did not sinter, except for 2.02 P:M
- Spring loaded compression to Pt foil

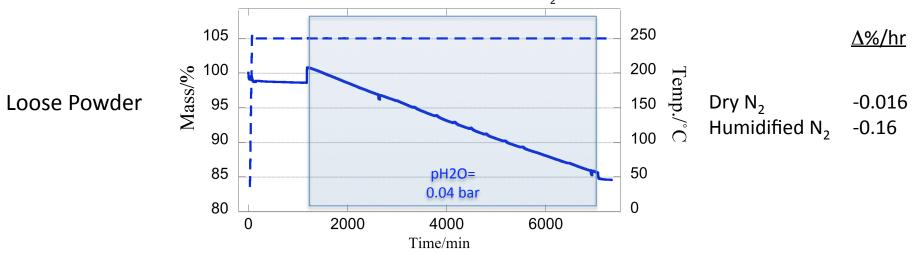
Measured impedance, calculated conductivity



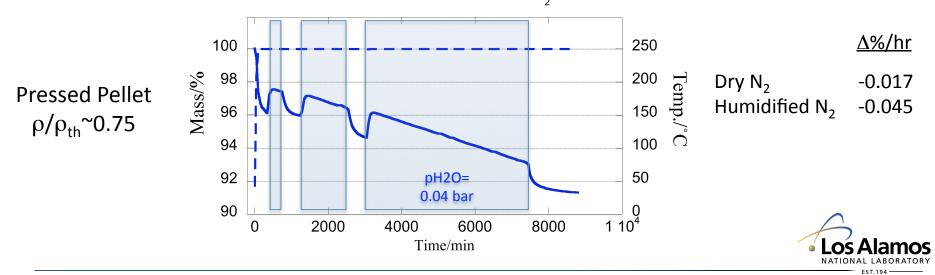
Conductivity of In_{0.1}Sn_{0.9}P₂O₇ with varying P:M

Stability of conductivity in dry and wet (pH₂O=0.04 bar) N₂ at 250°C

Conductivity of In_{0.1}Sn_{0.9}P₂O₇ with varying P:M



- Conductivity at 600 °C similar regardless of starting P:M
- Presence of H₂O has strong influence on stability



Stability of In_{0.1}Sn_{0.9}P₂O₇ with excess P:M

ITPP stability testing 250 °C, N2 (dry and pH₂O=0.04 bar)

ITPP stability testing 250 $^{\circ}$ C, N2 (dry and pH $_{_{2}}$ O=0.04 bar)

Indium Tin PyroPhosphate (ITPP) Conductivity

- Study indicates that excess phosphoric acid phase, likely residing at grain boundaries, has strong positive influence on conductivity
- While crystalline phase and overall composition were confirmed with XRD and XRF, we have not unequivocally determined that crystalline ITPP phase is stoichiometric in all cases
 - Possibly phosphate deficient ITPP with additional excess amorphous phosphorous phase
 - Substoichiometric ITPP has been shown to have reduced conductivity

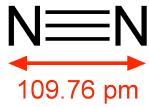
Future work:

- Probe crystalline P:M (occupancy) using Neutron Powder Diffraction
- Study protonic environment for varying P:M by probing vibrational states using Inelastic Neutron Scattering
- Address mechanical limitations- formulate dense pellets and/or incorporate ITPP into membranes

Catalysis of Nitrogen Reduction

Nitrogen triple bond energy 226 kcal/mole ~ 1MJ/mole!

Homogeneous phase molecular catalysts *Associative* (bond proton to N_2 then break N_2 bond...nitrogenase) Reaction has not been driven electrochemically.


Heterogeneous catalysis on Ru surfaces *Dissociative* (split triple bond then react...Haber-Bosch)

Heterogeneous catalysis MoN_x surfaces? (little work has been performed on metal nitride surfaces...must suppress H_2 formation)

Electrocatalysis has not been explored in detail

High pressure studies are advantageous to shift equilibrium

Synthesis of dinuclear dinitrogen complex

$$MoCl_{5} + Sn^{0} \xrightarrow{1)Et_{2}O} MoCl_{3}(thf)_{3} \xrightarrow{PNP} \overrightarrow{THF}_{50 \text{ °C, } 18 \text{ h}} \overrightarrow{N-Mo-Cl}$$

$$P = P^{t}Bu_{2}$$

$$3 \text{ equiv. } Na^{0}$$

$$10 \text{ % naphthalene}$$

$$1 \text{ atm } N_{2}$$

$$THF_{35 \text{ °C, } 24 \text{ h}}$$

 N_2 reduction catalysis with 1 equiv $[(PNP)Mo(N_2)_2]_2(N_2)$:

72 equiv Cp₂Co 96 equiv [LutH][OTf] ca. 1 atm N₂ solvent 20 hr, room temperature

Solvent	Equiv NH ₃ /cat
Toluene (Nishibayashi)	11.8
Toluene (Our work)	13.1
Various ILs	<i>ca.</i> 0.5

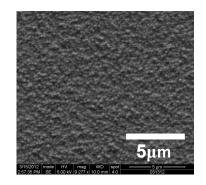
Echem experiments ongoing ...

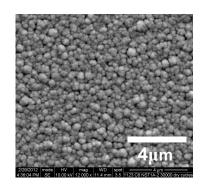
H₂ is also formed

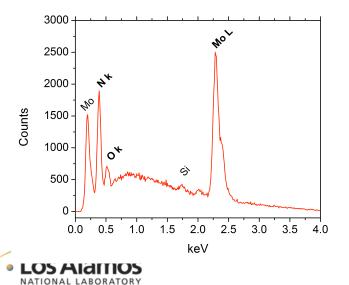
Mo₂N as a catalyst

- γ-Mo₂N is known to catalyze a number of reactions such as hydrogenolysis, and methanol steam reforming
- It is one of the most active non-group 8 catalysts for ammonia synthesis
- γ-Mo₂N is electrically conductive, which makes it an appealing candidate for use as an electrocatalyst
- Empirical relationships exist correlating sample preparation conditions and surface treatment and catalytic activity
- However, correlation between the catalytic activity and chemical structure is poorly understood

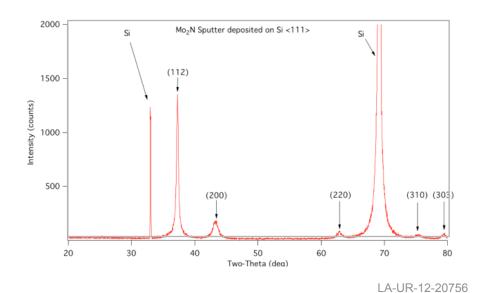
Mo₂N synthesis – powders

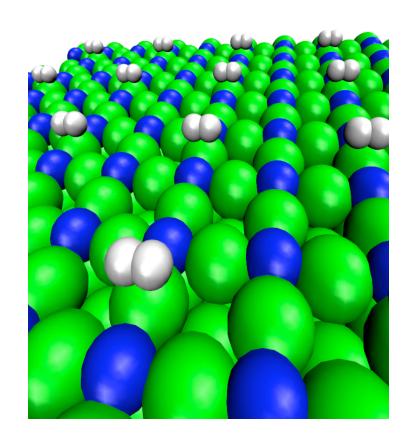

$$\begin{array}{c} \text{MoO}_3(\mathbf{s}) + \text{NH}_3(\mathbf{g}) & \triangle & \text{Mo}_2\text{N}(\mathbf{s}) \\ \\ \text{NoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}_3 & \text{pseudomorphic rxn} & \longrightarrow & \\ \\ \text{MoO}$$


EST.1943


Mo₂N synthesis – films

Reactive ion beam sputtering $Mo(g) + (10-50\%)N_2/Ar(g) \longrightarrow Mo_2N(s)$

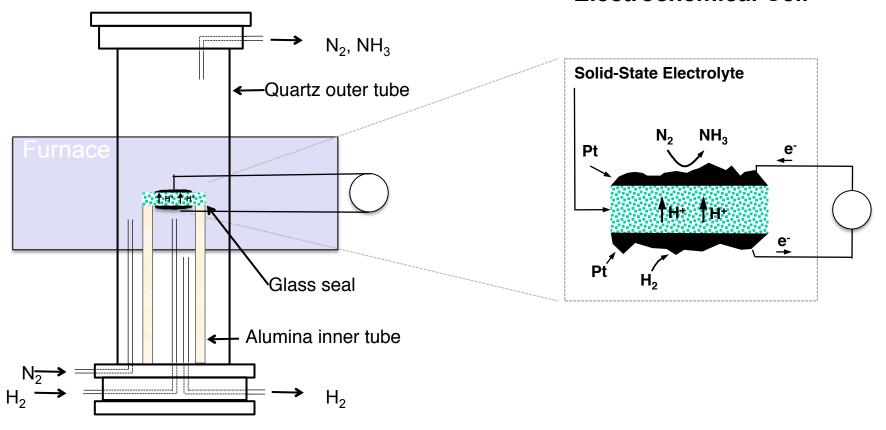

Product crystallinity, structure, deposition rate and surface area vary with: gas composition, pressure, type of substrate



EST.1943

Idealized surface structure of Mo₂N

fcc structure with ½ N positions vacant


THEORY: DFT N_2 binds to surface Mo atoms in side-on fashion

Gas Phase Echem Cell: Experimental Set-up

2-Chamber reactor cell

Electrochemical Cell

- Los Alamos NATIONAL LABORATORY EST.1943
- Atmospheric pressure
- 550-750 °C

Solid state electrochemical NH₃ synthesis

Proton Conductor	Cell	Temp	NH ₃ Formation Rate (mol s ⁻¹ cm ⁻²)
SCY	H ₂ ,Pd SCY Pd, N ₂ , NH ₃ , He	570°C	4.5 x 10 ⁻⁹ [1]
SCY	Steam H ₂ O,Pd SCY Ru-based, N ₂ , NH ₃ , He	650°C	9.1 x 10 ⁻¹⁴ [2]
BCGO	H ₂ ,Ag-Pd BCGO Ag-Pd, N ₂ , NH ₃	480°C	3.09 x 10 ⁻⁹ [3]
Nafion	H ₂ ,Pt Nafion Ru, N ₂ , NH ₃	80 °C	1.13 x 10 ⁻⁸ [4]
SCY	H ₂ ,Pt SCY Pt, N ₂ , NH ₃	650°C	2 x 10 ⁻⁹ Our work

- 1. Marnellos, Science, 1998
- 2. Skodra, Solid State Ionics, 2009
- 3. Li, J Solid State Electrochem, 2005
- 4. Xu, Sci China Ser B:Chem, 2009

Conclusions

- Tin pyrophosphate proton conductors are promising membrane materials for intermediate temperature (~ 250°C) electrochemical ammonia synthesis
- Ionic liquids may have promise
- Mo₂N studies are feasible with synthetic procedures for film formation
- Homogeneous Mo catalysts perform ammonia synthesis in ionic liquids, but development will require understanding of solvent effects and further investigation
- Electrochemical ammonia synthesis at 250°C is lowest temp prep using solid membrane material.

NEXT UP

Optimization of electrochemical cell design...catalyst, electrode fabrication, etc.

