

Mixed Protonic/ Electronic Conductors: SSAS and DAFC Applications

Jason Ganley, Ted Olszanski, and Neal Sullivan 24 September 2013

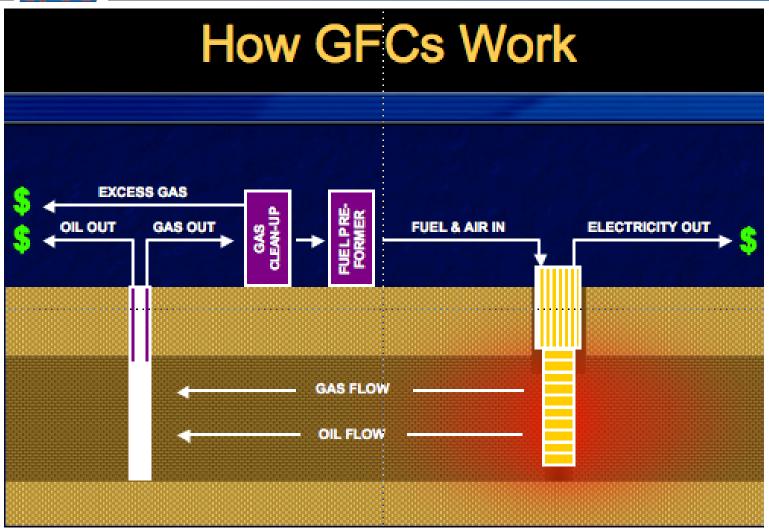
Presentation Outline

- Review of ongoing work at the CFCC
- Mixed Protonic / Electronic Conductors (MPECs)
- Applications for MPECs / Ceramatec SBIR
- Regenerative Fuel Cells (RFCs)
 - General Characteristics
 - Application to ammonia systems
- Characteristics of MPEC or composite electrodes
 - Protonic mobility
 - Electronic conductivity
 - Catalytic activity

Work at the CFCC

Colorado Fuel Cell Center

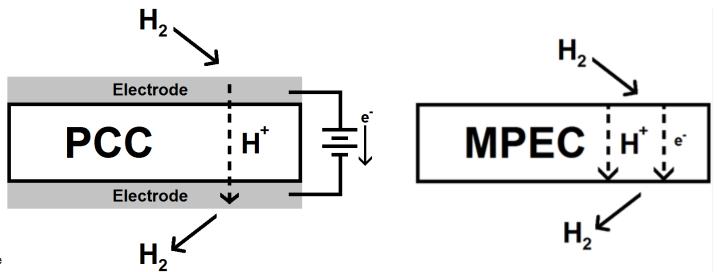
- Ceramic fuel cell development
 - Focus on intermediate temperature (500 700°C)
 - Proton-conducting ceramics (perovskites)
 - Electrode development


(fuel cell cathodes: air electrodes)

- Rapid prototyping of fuel cells: cold, uniaxial pressing of electrode-supported button cells, dip-coating of electrolytes
- Geothermal fuel cell!
- High temperature ceramic membranes
 - Hydrogen pumping
 - Hydrogen permeation

Geothermal Fuel Cell

Colorado Fuel Cell Center



Independent Energy Partners

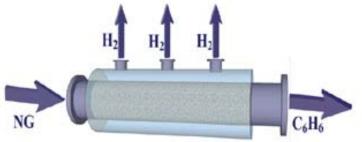
H₂ Pumps vs. H₂ Membranes

- Pumps: proton-conducting ceramics (PCCs), electrical insulators
- Membranes: use ceramics that conduct both H⁺ and e⁻
 - Mixed protonic / electronic conductors (MPECs)
 - No external power req'd; pressure/conc. driving force
 - No electrodes

A Bit More About MPECs

- Subset of mixed ionic/electronic conductors (MIECs)
- If used alone, restricted to membrane apps
 - Where the ions go, the electrons go
 - Can't produce or consume electrical work
 - Rely on pressure and concentration potentials to operate
- Very useful for integrated electrochemical systems!
 - Fuel cell or electrolytic cell electrode components
 - Protective layers for protonic electrolytes
- Functionality depends on application environment
 - Reducing or oxidizing? Temperature?
 - Surroundings can change nature of ion/elec. conduction

CFCC Pitches In: Ceramatec


Colorado Fuel Cell Center

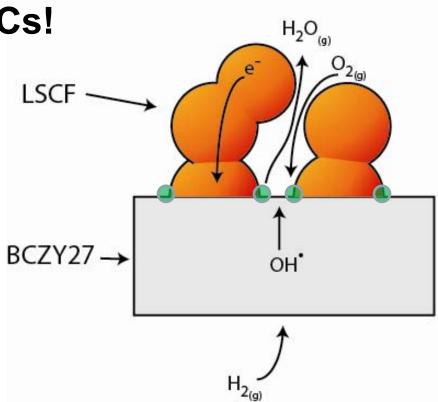
• Phase 1 SBIR: ARPA-E

- "One-step" natural gas to chemicals process
- Hydrogen produced as side product, need to shift equilibrium

CFCC testing MPEC membranes for H₂ flux from "model gas"

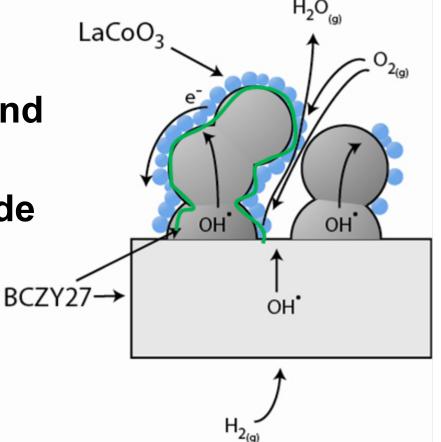
- Composite ceramic combined MPEC
 - $BaCe_{0.8}Y_{0.2}O_{3-\delta}$ (a.k.a. BCY, is a PCC)
 - $Ce_{0.8}Y_{0.2}O_{2-\delta}$ (a.k.a. YDC, is an EC)
- Goal: 0.3 μ mol cm⁻² s⁻¹ H₂ flux
- Coking issues, high mech. failure rate, thermal cycling problems

 $2CH_4 \rightarrow C_2H_4 + 2H_2$


 $6CH_4 \rightarrow C_6H_6 + 9H_2$

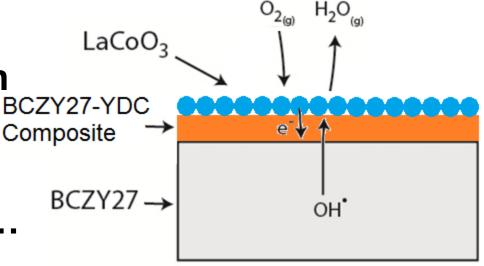
CFCC Electrode Modification

- La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} (LSCF):common cathode for SOFCs. Also a MIEC (oxide ion / electron)
- Great for SOFCs
- Not good for PCC-based FCs!
- Water may form only at TPBs



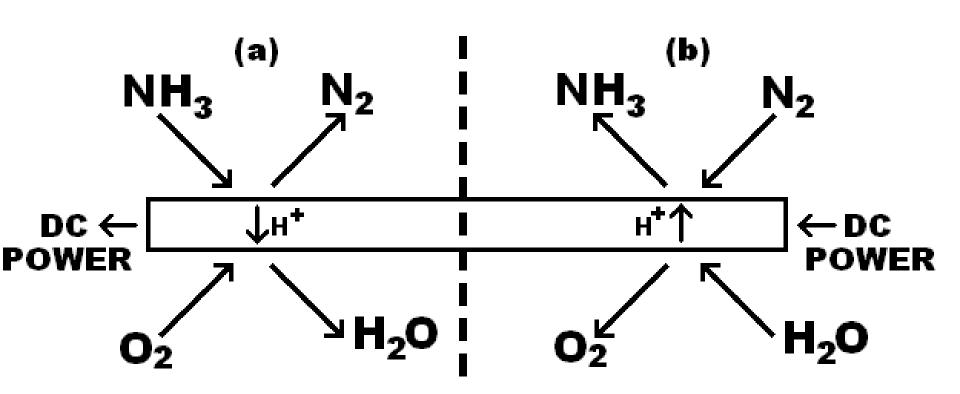
Proton-conducting Backbone

CC


- Improvement: now protons get to more surfaces
- Comparable to finned heat exchanger enhancement
- Electrons still require a continuous pathway around the outside...
- Another problem: electrode structure is fragile

MPEC to the Rescue?

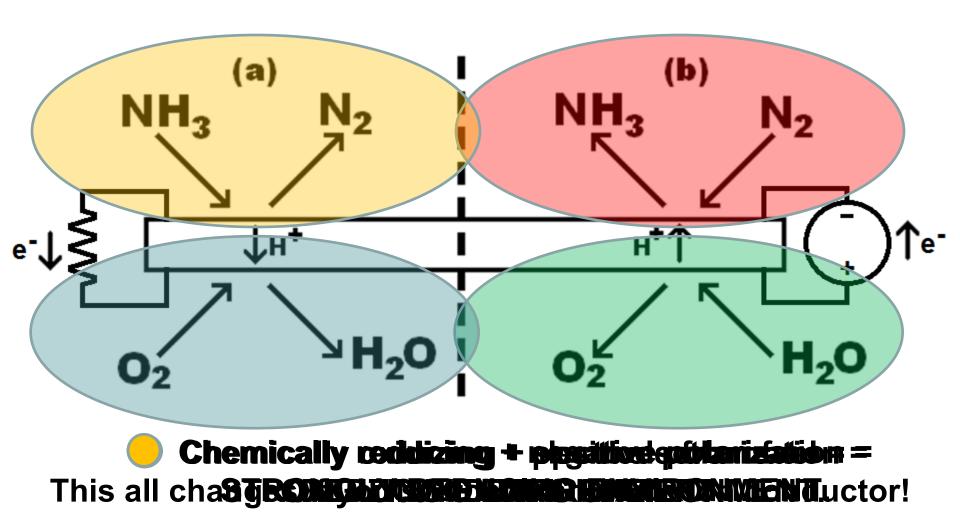
- Improvement: a porous MPEC interlayer
- Electrons and protons get where they need to go!
 - Gas (O₂ or steam) can get in/out of porous layer
 - LaCoO₃ may be layered, or impregnated throughout MPEC layer
- YDC demonstrates LaC electronic conduction in reducing environments BCZY27-Y Composite
- What about oxidizing environments? Hmmm...


A fuel cell that may be run in electrolytic mode – generating fuel when power is provided.

10th Annual NH₃ Conference

Ammonia RFC

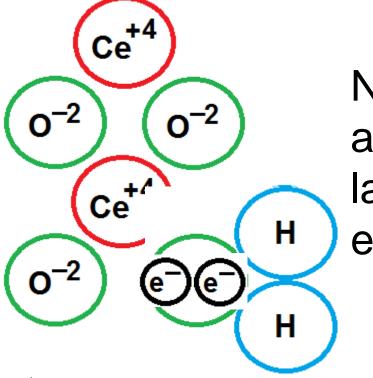
Colorado Fuel Cell Center



PCC membrane operating in (a) fuel cell and (b) fuel synthesis modes.

Oxidizing or Reducing?

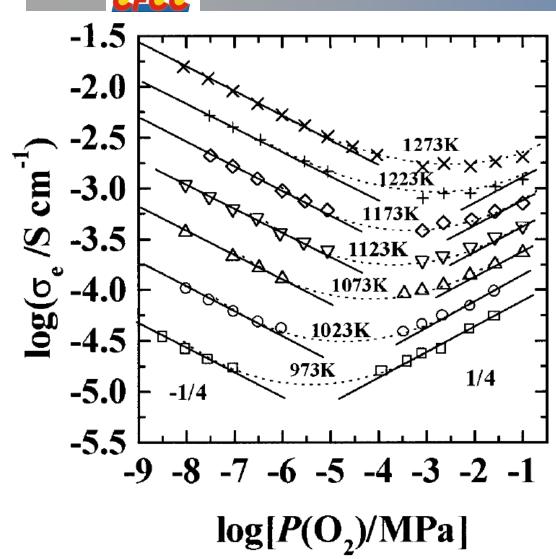
Colorado Fuel Cell Center


CECC

Reducing Environments

Colorado Fuel Cell Center

- Why do they allow MPEC behavior?
 - Ce⁺⁴ (dominates YDC20) reduced to Ce⁺³
 - Oxygen vacancy and stranded lattice electron created
 - Acts as n-type conductor


New oxygen vacancy (w/H₂O) assists with proton conduction, lattice electron assists with electronic conduction.

Oxidizing Environments

- These are a little different
 - Oxygen vacancies already exist: Y⁺³ in place of Ce⁺⁴
 - Oxide ions are therefore free to hop through the lattice
- Porous layer of PCC/YDC? H⁺, O⁻² make water at point of contact, water escapes.
- But this doesn't help with electronic conductivity. Or does it?

Electronic Conduction in YDC

This study observes hole (p-type) conduction at high oxygen partial pressure... and holes are part of the protonic fuel cell process.

Colorado Fuel Cell Center

Xiong, et al. *J. Electrochem. Soc.*, **149** (11) E450-E454 (2002).

Oxygen Vacancy Competition

- Two oxygen vacancy reactions for oxidizing env.
- Electrolytic and fuel cell modes each have O₂ / H₂O at same electrode in a protonic cell
 - Water makes protonic defects
 - Oxygen creates holes

$$\begin{split} \mathrm{H}_{2}\mathrm{O} + \mathrm{V}_{\mathrm{O}}^{\bullet\bullet} + \mathrm{O}_{\mathrm{O}}^{\times} &= 2\mathrm{OH}_{\mathrm{O}}^{\bullet} \\ \frac{1}{2}\mathrm{O}_{2} + \mathrm{V}_{\mathrm{O}}^{\bullet\bullet} &= \mathrm{O}_{\mathrm{O}}^{\times} + 2\mathrm{h}^{\bullet} \end{split}$$

- Incorporated oxygen atoms $\overline{2}^{\circ}$ are opposed in these reactions...
- Can tailor MPEC for environment, temperature, and cell function

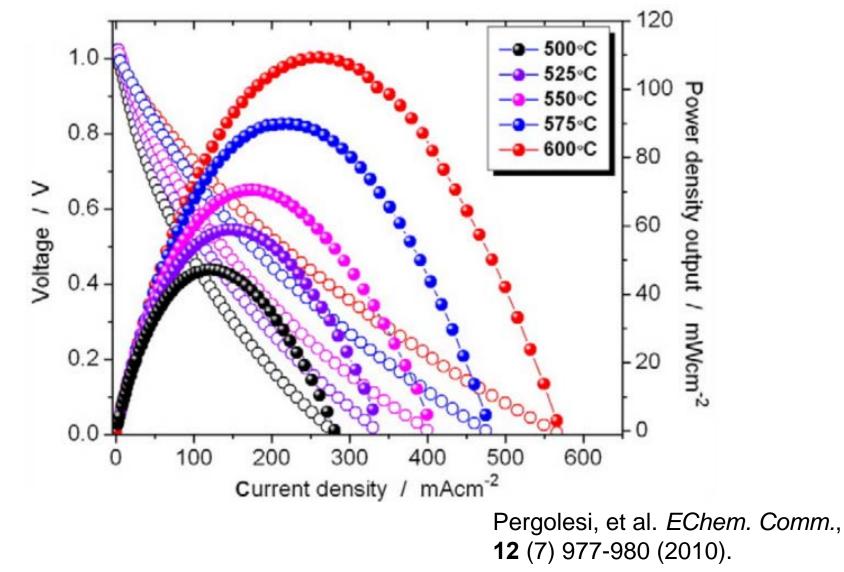
The Bottom Line

Colorado Fuel Cell Center

- In oxidizing environments, YDC isn't a great idea
 - P-type electrical conduction, but...
 - Ionic conduction dominated by hole conduction
- A better idea: dope proton conductors with multivalent (+2/+3) cations

 $BaCe_{0.9}Yb_{0.1}O_{3-\delta}$ $BaCe_{0.9}Co_{0.1}O_{3-\delta}$

 $BaCe_{0.9}Eu_{0.1}O_{3-\delta}$ $BaCe_{0.9}Ni_{0.1}O_{3-\delta}$


 $BaCe_{0.9}Sm_{0.1}O_{3-\delta}$ $BaCe_{0.9}Fe_{0.1}O_{3-\delta}$

Or, mix +3 cations with different ionization energies (In, Pr, Bi, Gd).

Some Promise: BCYb

CECC

Composite Electrode, or MPEC?

- Composite: separate ionic and electronic phases
 - Pathways can be tortuous, or dead-ends!
 - Will there be interphase chemical interaction?
 - Differences in thermal expansion?
- Unified MPEC drawbacks exist
 - Better at either ion or electron/hole conduction
 - Electron or hole conduction is never "great"
 - Almost zero electrocatalytic activity
- If MPECs are used, must:
 - Be in thin layers
 - Be capable of catalyst support

CFCC Plans

- Move on after Ceramatec project
- Electrode-supported button cell tests
 - Thin electrolytes
 - Special focus on fuel cell cathodes
 - Steam electrolysis tests
 - Catalyst screening (La₂NiO₄, LaCoO₃, etc.)
- Demonstrate cell reversibility (H₂, O₂ / H₂O)
- Ammonia as fuel, SSAS with addition of N₂ in electrolytic mode
- Cell temperatures of 500 700°C, atmospheric pressure tests

Colorado Fuel Cell Center

Jason C. Ganley Colorado School of Mines Dept. of Chemical & Biological Engineering 1613 Illinois Street, AH 155 Golden, CO 80401 (303) 384-2163 jganley@mines.edu

10th Annual NH₃ Conference