Characteristics of an SI Engine Using Direct Ammonia Injection

George Zacharakis-Jutz
Song-Charng Kong
Department of Mechanical Engineering
Iowa State University

Acknowledgements:

Iowa Energy Center; Norm Olson Robert Bosch; National Instruments

Thermodynamics/Chemistry

Stoichiometric chemical reaction

$$NH_3 + 0.75 \cdot (O_2 + 3.76 \cdot N_2) \rightarrow 1.5 \cdot H_2O + 3.32 \cdot N_2$$

Fuel	Molecule	Boiling Point (°C)	(Air/Fuel) _s	Latent Heat (kJ/kg)	Energy Content (MJ/kg-fuel)	Energy Content (MJ/kg- stoichiometric mixture)
Methanol	CH₃OH	64.7	6.435	1203	20	2.6900
Ethanol	C ₂ H ₅ OH	78.4	8.953	850	26.9	2.7027
Gasoline	C ₇ H ₁₇		15.291	310	44	2.5781
Diesel	C _{14.4} H _{24.9}		14.3217	230	42.38	2.7660
Ammonia	NH ₃	-33.5	6.0456	1371	18.6103	2.6414

Ammonia Fuel Characteristics

Challenges

- Ammonia is very difficult to ignite
 - Octane number ~ 130
 - Autoignition T ~ 651 °C (gasoline: 440 °C; diesel: 225 °C)
- Ammonia flame temperature is lower than diesel flame T
- Erosive to some materials
- Ammonia emissions can be harmful
- Potential high NOx emissions due to fuel-bound nitrogen

Approaches

- CI engine operation
- Port induction of gaseous ammonia, ignited by directly injected diesel/biodiesel fuel (2008 2009)
 - Achieved a wide range of load and speed conditions
- Direct injection of liquid ammonia/DME mixtures (2010 2011)
 - Achieved successful operations using various ratios
- SI engine operation
 - Port induction of ammonia has been done by others.
- **#3** Direct injection of gaseous ammonia, enhanced by gasoline combustion (2012 2013)
- ***4.** Direct injection of gaseous ammonia with decomposition catalyst, enhanced by gasoline combustion (2013)

#1: Results – Constant Torque

- John Deere, 4-cylinder 4.5-liter diesel
- Gaseous ammonia introduced thru intake manifold
- Fixed at different diesel fueling, adjusted NH3 flow rate to maintain constant torque
 - Can achieve 5% diesel / 95% NH₃ energy ratio

NH₃ Exhaust Concentrations

- Concentrations vary depending on NH₃ fueling rate
- Further study is required to reduce NH₃ emissions.

#2 Results – NH₃/DME

- Use direct liquid fuel injection
 - Confine combustion mixture near the center
 - To reduce exhaust ammonia emissions
- Dimethyl ether (CH₃-O-CH₃) as ignition source
 - Various NH₃/DME ratios
 - Fuel mixing and storage at high pressure
- Yanmar diesel engine (L70V, 320 c.c.)
 - Rated power at 6.26 hp at 3,480 rpm
 - Developed new fuel injection system

Test Conditions

Mode	Engine Speed (rpm)	Engine Power (kW)	Engine Torque (Nm)
5	2548	1.74	6.61
7	2548	0.87	3.31
9	2895	1.05	3.52
11	3243	1.12	3.34
20	2200	1.47	6.47
21	2200	0.74	3.24

Fuel	SOI (BTDC)	P_inj	T_intake air
100%DME	0 ~ 30	150 bar	30 C
20%NH ₃ -80%DME	5 ~ 35	150 bar	60 C
40%NH ₃ -60%DME	15 ~ 40	180 bar	80 C
60%NH ₃ -40%DME	140 ~ 180	205 bar	90 C

Sample Results

- High latent heat of liquid ammonia
- Cooling down in-cylinder gas
- Causing incomplete combustion
- Combustion instability

#3 Results – DISI NH₃

- Single cylinder CFR engine
 - Spark ignition; 10:1 compression ratio
- Port gasoline injection
- Direct gaseous ammonia injection
 - Better volumetric efficiency
 - Solenoid pulse valve as the injector
- Heated water bath to achieve injection (10~12 bar)

PFI Gasoline + DI NH₃

Ammonia injection conditions

- Engine power boost by ammonia
 - Gasoline produce 0.6 kW

PFI Gasoline + DI NH₃

Same power achieved by "gasoline alone" and

"gasoline + NH₃"

Comparable fuel efficiency

 Higher NOx emissions using "gasoline + NH₃"

12

#4 Results – DISI NH₃ with Catalyst

- Ammonia dissociation catalyst coated with 2% ruthenium on 3.175-mm alumina pellets
- Utilize engine exhaust heat

Ammonia Decomposition Catalyst

Engine power and efficiency are increased

Ammonia Decomposition Catalyst

Exhaust emissions are reduced

Perspectives

- Current test engine
 - Small size, high heat loss
 - Simple injection system, low injection pressure, low flow rate
 - Simple catalyst arrangement, small quantity
- Future improvement
 - Better injection system, higher flow rate
 - Improved catalyst design and arrangement

Future Direction – Diesel Application

DON'T

- Direct injection of liquid ammonia into the cylinder
- Direct injection of gaseous ammonia into the cylinder
 - Needs to use high injection pressure to overcome the in-cylinder pressure → ammonia will liquefy in the injection line

DO

- Diesel pilot injection to initiate combustion
- Port injection of gaseous ammonia
- Use ammonia decomposition catalyst

Key technology

- Injector suitable for gaseous ammonia: material compatibility, low pressure, large flow rate
- Catalyst geometry/arrangement, utilizing engine exhaust heat
- Exhaust after-treatment SCR

Potential Study – Diesel Application

- Our earlier study older diesel engine
 - Mechanical diesel fuel injection pump
 - Continuous induction of gaseous ammonia into a single point at the intake manifold
- Possible future study
 - New engine, electronically-controlled diesel injection
 - One ammonia injector per cylinder, electronically controlled
 - Preventing unburned ammonia
- RCCI Concept
 - Reactivity-controlled compression ignition
 - Reactive fuel (diesel) to control ignition, less reactive fuel (ammonia) to control combustion duration

Future Direction – Gasoline Engine

- DON'T
 - Direct injection of liquid ammonia into the cylinder
- DO
 - Gasoline to enhance ammonia combustion
 - Port injection of gaseous ammonia
 - Risk of displacing air and reducing volumetric efficiency and engine power
 - Direct injection of gaseous ammonia
 - Narrow injection window before cylinder pressure rises
- Key technology
 - Injector
 - Catalyst
 - Exhaust after-treatment SCR

Potential Study – Gasoline Engine

- Our earlier study CFR engine, DI gaseous NH₃
 - Without throttle control
 - Small injector
- Possible future study
 - Production engine
 - Electronically-controlled gaseous ammonia injection
 - Port injection or direct injection