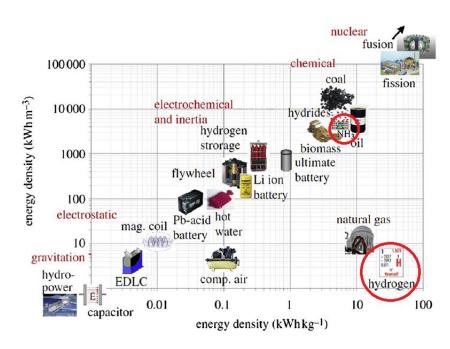
Chemical kinetics study of combustion characteristics of ammonia-air mixtures under high pressure lean conditions

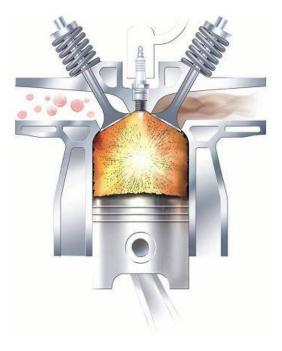
Hadi Nozari and Arif Karabeyoğlu

Department of Mechanical Engineering Koç University İstanbul, Turkey

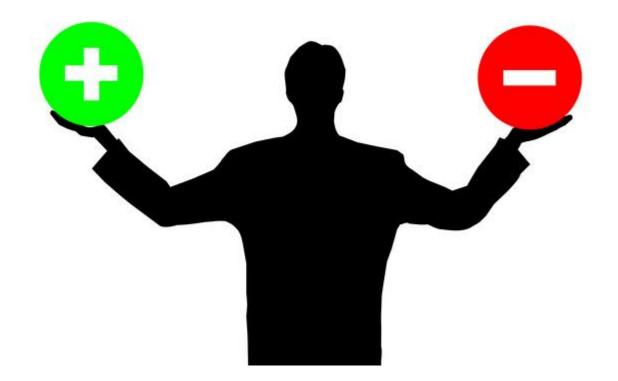

2014 NH₃ Fuel Conference

• Low-cost storage (like propane storage conditions)

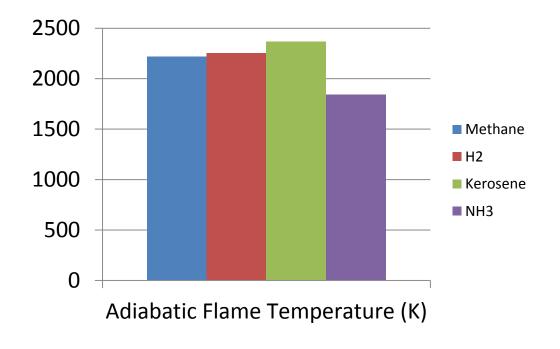
Higher volumetric energy density



Power generation capacity


Fuel	Fuel/air ratio*	Tcombuster* K at 20atm	Texhaust K at 1 atm	Enthalpy change (work) kJ/kg
Methane	0.058	2277	1260	1551
JP-4	0.068	2342	1313	1539
Ethanol	0.111	2295	1289	1546
NH3	0.164	2092	1114	1549

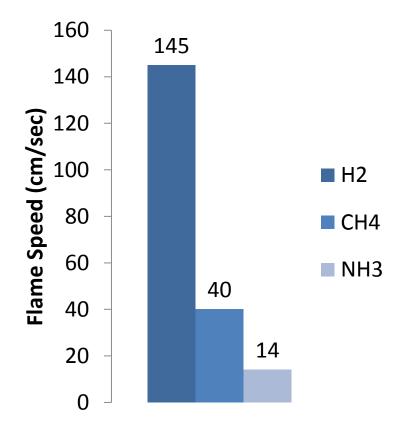
* Stoichiometric fuel/air combustion at a pressure ratio of 20:1



Drawbacks also exist!

MAIN CHALLENGES

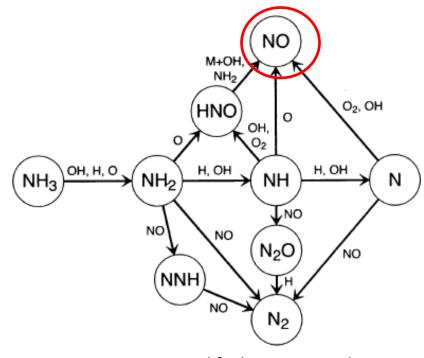
• Low flame temperature and slow kinetics



1 atm and 20°C

MAIN CHALLENGES

• Low flame speed



Standard Temperature and Pressure Air as oxidizer

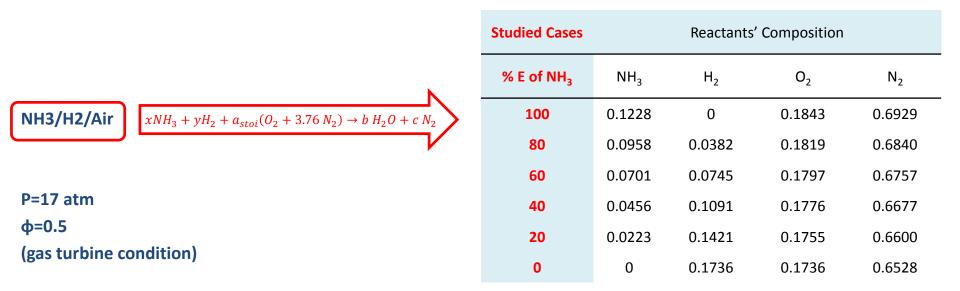
MAIN CHALLENGES

- NH₃ , A SOURCE OF NOx IN FLAMES
- Fuel NOx

A simplified reaction mechanism

OBJECTIVES AND APPROACH

Objective


- To burn NH3 in a power generation system in efficient and environmentally friendly way:
 - Low NOx emission
 - Low NH3 slip

Approach

- Chemical kinetics study of NH3/H2/Air under practical combustion conditions
- Developing a reduced mechanism capable of predicting combustion characteristics with an acceptable accuracy
- CFD simulation of combustion by applying the reduced mechanism
- Experimental study to examine the validity of results

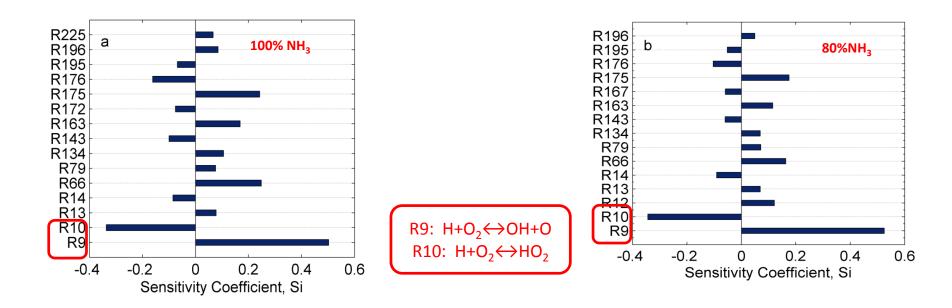
NUMERICAL STUDY CONDITIONS

% ENH3 = $\frac{X_{NH3} \times LHV_{NH3}}{X_{NH3} \times LHV_{NH3} + X_{H2} \times LHV_{H2}} \times 100$

- Laminar flame speed sensitivity analysis
- Autoignition process
- NOx formation sensitivity analysis
- Impact of variation of main parameters on total NOx level

REACTION MECHANISM

Konnov Mechanism* Elements: N/H/O Species: 30 Reactions: 240



* A.A.Konnov, Combust. Flame 156 (2009) 2093-2105

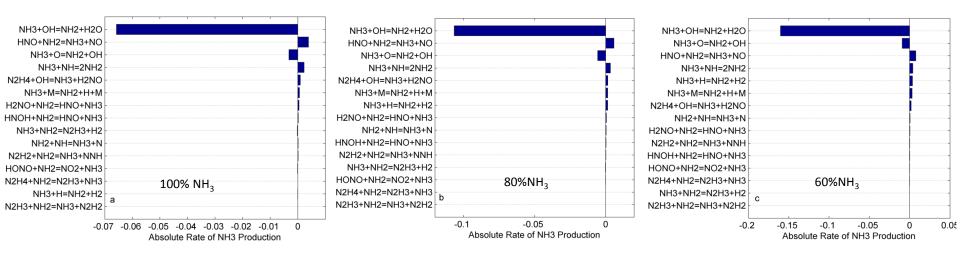
Laminar flame speed sensitivity analysis

Aim: To identify the most influential reactions to the laminar flame speed

 $S_i = (A_i/S_u) \times (\partial S_u/\partial A_i)$

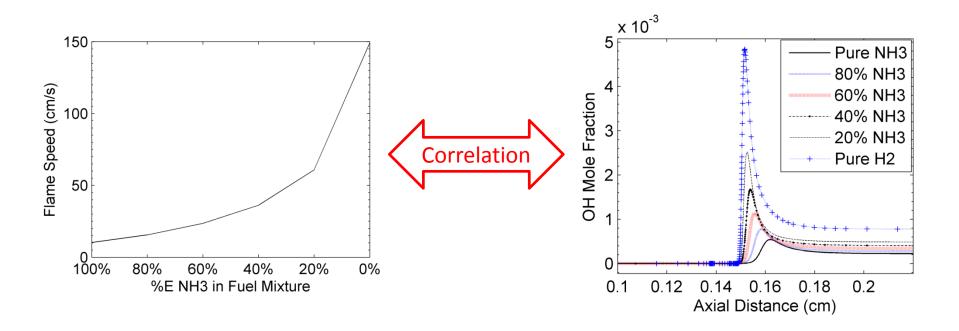
 S_i : Normalized sensitivity coefficient of the ith reaction

 A_i : Pre-exponential rate constant of the ith reaction


 S_u : Laminar flame speed

Ammonia decomposition analysis

Aim: To identify the contribution of each reaction in molar conversion of NH₃



Study Cases	The most important reactions and their contribution (%)			
Fuel mixture	$NH_3+OH\leftrightarrow NH_2+H_2O$	$NH_3+O \leftrightarrow NH_2+OH$	$NH_3+NH_2\leftrightarrow N_2H_3+H_2$	
Pure NH ₃	95%	4.64%	0.23%	
80%NH ₃	94.8%	5.04%	0.11%	
60%NH ₃	94.5%	5.45%	ignorable	

Importance of OH radical in flame speed

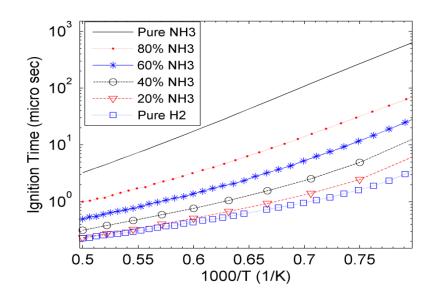
 ϕ = 0.5, P=17 bar, T= 673 K

RESULTS

Autoignition

Importance of radicals in autoignition and ignition initiation

Accumulation of influential radicals close to the ignition time

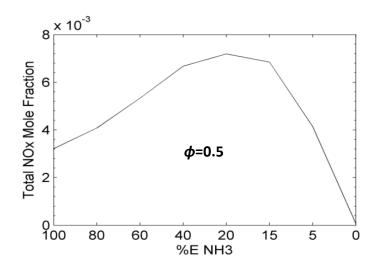


φ=0.5, T=1300 K, P=17 bar

Autoignition

- Effect of initial mixture T
- Effect of NH3 content

NOx Formation


Effect of H2 addition to the mixture

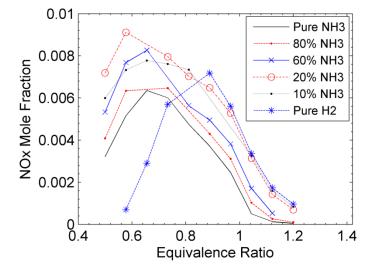
- Addition up to 80%
 - Increase in total NOx

Thermal NOx increase > Fuel NOx decrease

- Higher than 80% H2
 - Decrease in total NOx

Fuel NOx decrease>Thermal NOx increase

NOx Formation


Effect of equivalence ratio variation

• Increasing / Decreasing trend

Two opposite effects:

- 1) Increase in thermal NOx by increase in adiabatic flame T
- 2) Decreasing fuel NOx by decreasing O/F ratio
 - $NH_i + OX \rightarrow NO + H_iX$

OX: Oxygenated species

Noticeable reduction in NO_x emission under the rich conditions

P=17 bar, T=673 K

CONCLUDING REMARKS

Under the studied conditions

- Controlling role of radicals in laminar flame speed and autoignition process with OH as the most influential radical
- Adding H2 to the fuel mixture improved laminar flame speed and autoignition process
- Adding H2 does not necessarily decrease the NOx level
- Total NOx formation is highly dependent on the **competition** between **fuel NO_x** and **thermal NO_x** levels
- NOx level is very sensitive to equivalence ratio in all the mixture compositions
- Localized rich combustion seems to minimize NOx. Ammonia slip may be the compromise

FUTURE RESEARCH

• Obtaining a reduced mechanism applicable to CFD codes

• CFD simulation of the combustion process using the resulted reduced mechanism

• Experimental investigation of NH3 combustion in combustor of a power generation unit

Thank You

