Life-cycle Greenhouse Gas And Energy Balance Of Community-scale Wind Powered Ammonia Production

NH3 Fuels 2014 Conference September 23rd Des Moines, IA

Joel Tallaksen^{a*}, Fredric Bauer^b, Christian Hulteberg^b Michael Reese^a, Serina Ahlgren^c

A) West Central Research & Outreach Center, Univ. Of Minnesota

B) Department Of Chemical Engineering, Lund University, Sweden

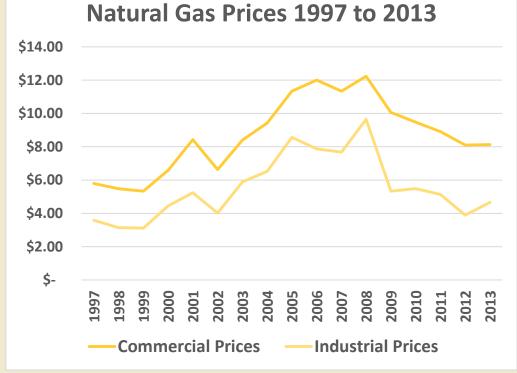
C) Department Of Energy And Technology, Swedish University Of Agricultural Sciences

The WCROC Research Facility

- One of several locations around the state that researches agriculture
- In addition to traditional agricultural topics, we focus on energy and agricultural systems.
- •Our energy focus is covers community scale agricultural energy issues.

Several Industrial Uses for Ammonia

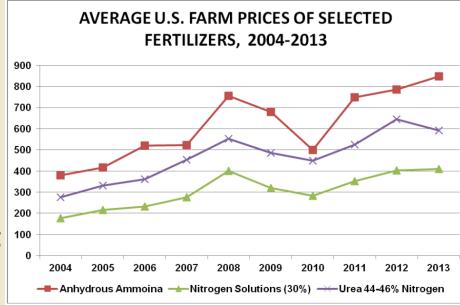
- Refrigeration
- Chemical Manufacture
- Agriculture
 - Largest Current use in the US
- As an energy storage medium


Traditional Production of Ammonia

•Large Facilities

- High capital costs
- Large Resource Demand

Production must be located near feedstocks


- Fossil Based- cost linked
 - Natural gas
 - Coal gasification
- •Transported great distances

Issues with Traditional production

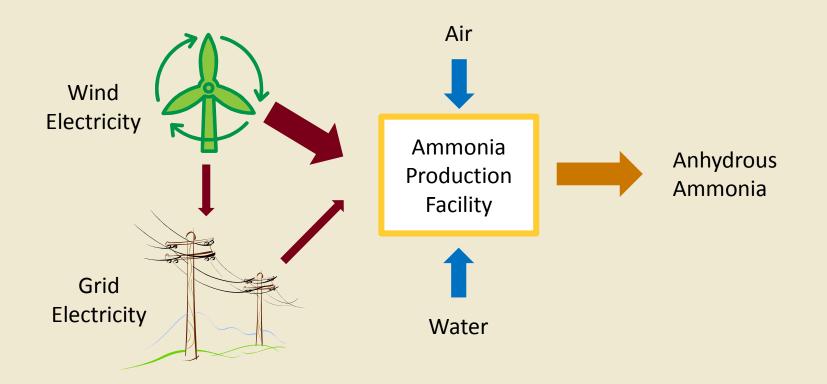
- Fossil Energy Use
 Both coal and natural gas
- Shortages
 - Transportation bottlenecks
 - Demand Spikes in fall and spring

• Cost

Wind Powered Ammonia Production

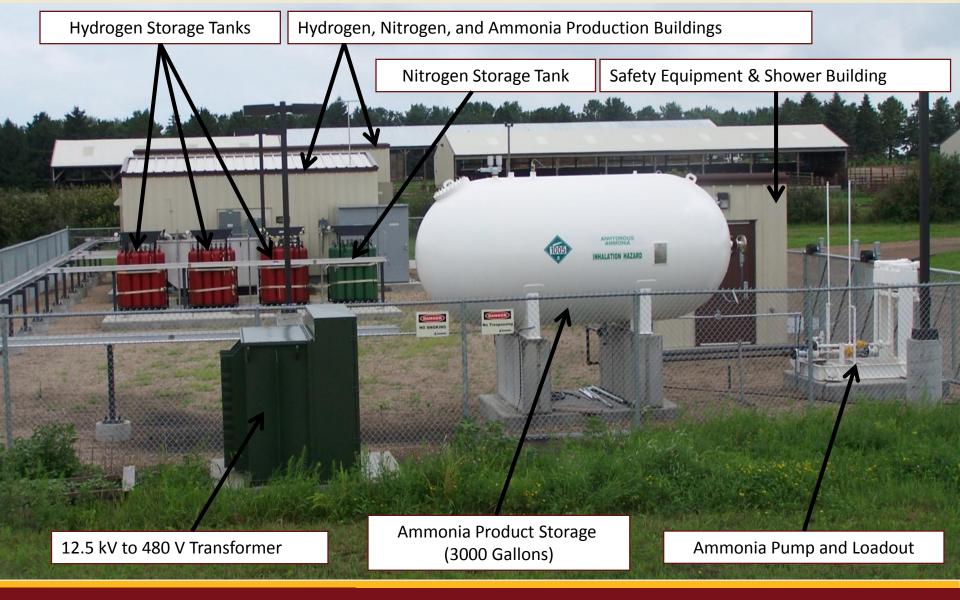
•Uses electricity for entire process

- Commercial scale turbines with grid backup
- Nitrogen isolated from the air
- Hydrogen from electrolysis of water

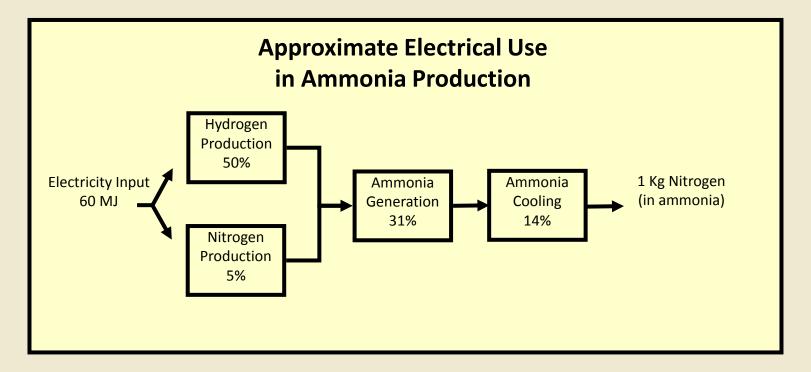

• Done at 'community' scale, where needed

- Less capital
- Limited transport needed

University of Minnesota Ammonia Facility



TALLAKSEN et al 2014



Status of Pilot Facility

- Operating and studying the system since early 2013.
- Production chemistry and reactor appear to function well.
- Production capacities seem to be accurate.
- Some issues with supporting equipment systems
 - Modified from off the shelf industrial equipment
 - Little prior experience on how these should be set up
 - Valve and sensor materials
 - Not always compatible with ammonia
 - Sometimes not correct for temperatures seen.

How Electricity is Used In The System

•This is the point the work was at last year at this time

Environmental Impacts of Wind Based Ammonia Production

• Environmental impacts are an important consideration

- Wind based ammonia not likely to be adopted if not a 'green' technology
- Agriculture under pressure to be more sustainable

<u>Research Question</u>: Does using wind energy for ammonia production have less environmental impacts than the traditional fossil methods?

- Fossil energy depletion
- Releases of greenhouse gases

Using LCA Modeling To Study Impacts

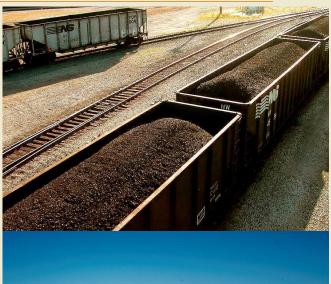
- Limited life cycle assessment
- 'Cradle to Grate'
 - All resources going into energy production
 - Wind infrastructure construction energy
 - Grid fossil energy and infrastructure construction energy
 - Units of ammonia production
- Analysis ends at production storage tanks
 - At this point wind ammonia and fossil ammonia are identical

Ammonia Production System Modeled

- Community-scale facility
 - Serve a county sized mid-western agricultural area
 - Based on a Midwestern agricultural coop size
 - Around 150,000 acres of corn
 - 5500 tonnes anhydrous ammonia per year
 - Roughly 630 kg per hour NH3 (520 Kg N)
- •Energy demand
 - 7.4 MW constant
 - ♦ 8-15 Turbines depending on scenario

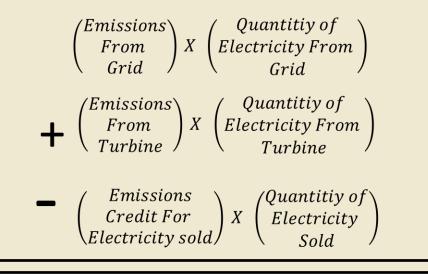
Scenarios Examined

- Location
 - Sweden
 - United States
- Net percent of system electricity produced by wind
 - ◆ 75% From Wind (25% purchased)
 - ◆ 100% From Wind (Net 0)
 - ◆ 125% From Wind (25% excess sold)


Data Analyzed

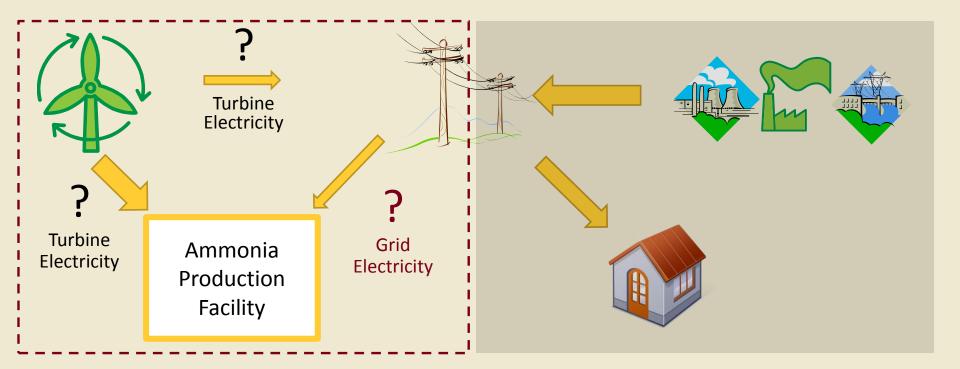
• Electrical flows

- Power purchased from the grid
- Power sold to the grid


• Environmental footprint for electricity

- Types of power generation
- Percentage of each power type
- Fossil energy used by power type
- GHG released by each power type

Overall Method of Calculating Emissions*



Emissions Per Kg of Ammonia Produced

*Same Basic Idea for Fossil Energy Use

Flows of Power

Modeling Power Flows

- Began with a wind energy model
 - Actual data vs mathematical estimates
- Models provided :
 - Energy production by the wind farm
 - Frequency of specific production levels.
- Data was turned into an average for each hour of operation
- The end result was a set of number for each scenerio.

Modeling Power Flows

 Began with a wind energy model 			
 Actual data vs mathematical estimates 	Average Hourly Power Flows Minnesota 125% production model 13.4 turbines (1.65MW) needed		
 Models provided : Energy production by the wind farm Frequency of specific production levels. 			
 Data was turned into an average for each hour of operation 	Wind Production: Grid Purchases: Net Sales:	9.3 MWhr 2.6 MWhr 4.5 MWhr	
 The end result was a set of number for each scenario. 	Power to Facility	7.4 MWhr	

Regional Electricity Grids Compared

- Minnesota has significant coal generations with nuclear and wind making up most of the rest.
- Sweden has mostly hydropower and nuclear. Very little fossil generation
 - Note: regional electricity imports/exports not included in modeling

Source	Minnesota	Swedish
Wind power	13%	5%
Hydro power	1%	51%
Gas turbines	6%	0.06%
Coal	53%	-
Nuclear	23%	39%
Solar/other	1%	-
renew.		
Crude Oil	1%	-
Biomass and other	3%	5%

UNIVERSITY OF MINNESOTA Driven to Discoversm

Fossil Energy and Emissions In Electrical Production

- •Fossil energy use for 'green' technologies was in construction of the systems
- •In conventional fossil-based electricity, fossil energy use was much greater (as expected)
- Greenhouse gas emissions followed the same patterns

<u>Technology</u>	Primary energy <u>factors</u>	Associated GHG emissions (g CO ₂ -eq/MJ)
Wind power	1.03	1.81
Coal	5.7	331

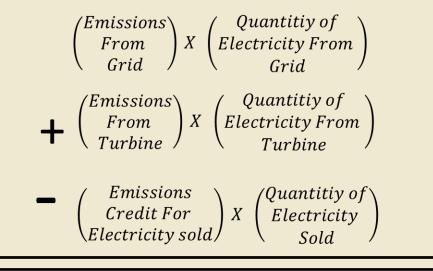
Primary energy roughly translates to "natural Energy" - Wind, water, biomass, solar, atoms

Grid Electricity Footprint

- Power plant infrastructure construction
- Fossil energy use
- •For Minnesota estimates:
 - Database of footprints for each power type
 - Percentages of each type of power
- •Estimates for Sweden:
 - Each type of power has documents data
 - Looked at the percentage each contributes

e		MJ primary energy per MJ electricity	g CO ₂ –eq per MJ electricity	
	Sweden	1.87	4.88	
	Minnesota	4.90	206	

Wind Power Footprint


- •Used Data From Wind Turbine Manufacturer (Vestas)
 - A complete life cycle assessment had been done of construction of a 1.65MW turbine
- Combined manufacture data with local capacity factors
- Energy required to build the turbine per kW hour of power produced by the turbine.

	MJ primary energy per MJ electricity	g CO ₂ –eq per MJ electricity
Minnesota	1.03	1.81
Sweden	1.03	2.01

Primary energy of wind includes 1 MJ of actual energy in the wind and 0.03 MJ of energy needed for construction

Overall Method of Calculating Emissions*

Emissions Per Kg of Ammonia Produced

*Same Basic Idea for Fossil Energy Use

Fossil Energy Use

Minnesota

Significant fossil energy reduction at 100% and 125% More fossil energy with only 25% from the grid.

Sweden

Significant fossil energy saving at all levels of production

Fossil Energy Use In Ammonia Production (MJ/kg of N)								
	Ν	Ainnesot	а	Sweden				
Scenario	75%	100%	125%	75%	100%	125%		
Fossil based Ammonia	33.1	33.1	33.1	33.1	33.1	33.1		
Wind based ammonia	49.4	6.69	-35.8	1.71	1.48	1.25		
Comparison	149%	20%	-108%	5%	4%	3%		

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Greenhouse Gases

Minnesota

Significant GHG reduction at 100% and 125%

More GHG than fossil ammonia with only 25% from the grid.

Sweden

Significant fossil saving at all levels of production

Greenhouse Gas Emissions g CO2 Equiv. Per KG N						
	Minnesota			Sweden		
Net Wind Production:	75%	100%	125%	75%	100%	125%
Fossil based Ammonia	2150	2150	2150	2150	2150	2150
Wind based ammonia	2890	413	-2050	153	116	78
Comparison	136%	19%	-96%	7%	5%	4%

Sensitivity Analysis

Examined model variables that could have important impact on the results

- Energy needed to make Ammonia
 - Increase- linear response
 - Decrease-linear response
- Reduced Capacity Factor
 - ♦ Set both countries capacity factor to 25%
 - Significant increases in fossil energy and GHG emissions

Conclusions

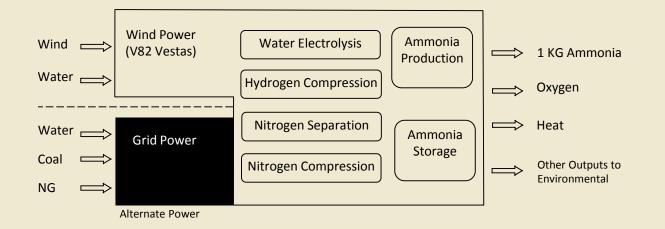
- Electricity source and its associated emissions is critical
 - A heavily fossil dependent grid quickly increases fossil use and carbon emissions in ammonia production
 - Grid power backup should be minimized in some regions do to the fossil energy use
- More attention should be paid to precursor storage.
 - Hydrogen production can be ramped up and down quickly
 - Can be stored in times of high wind energy production

Future Steps

- Model other base load renewable energy sources
 - Anaerobic digestion
 - Hydro electric
 - Gasification
- Model systems with hydrogen storage
- More data on facility energy use

Acknowledgment

• Swedish Energy Agency (International Collaboration Funding)


• Many sponsors for ammonia system

• Ongoing Funding from LCCMR (Legislative-Citizens Commission on Minnesota Resources)

http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Wind to Ammonia LCA System Boundaries

