

Investigating and Understanding Ionic Ammine Materials

Tuesday, 23rd September 2014

Martin Owen Jones STFC, ISIS Neutron Spallation facility

A (very) brief history of ammine materials

Werner Complexes

Alfred Werner 1866 – 1919 Nobel Prize in Chemistry 1913

Coordination Compounds

 $CoCl_3 \bullet 6NH_3$

 $[Co(NH_3)_6]Cl_3$

Most Metals in Solution

<u>Metal Ion</u>	<u>Ligand</u>	<u>Complex</u>
Ag ⁺	2 NH ₃	Ag(NH ₃) ²⁺
Cu ⁺	2 NH ₃	$Cu(NH_3)_2^+$
Cu ²⁺	4 NH ₃	$Cu(NH_3)_4^{2+}$
Zn ²⁺	4 CN-	Zn(CN) ₄ ²⁻
Hg ²⁺	4 I ⁻	Hgl ₄ ²⁻
Co ²⁺	4 SCN⁻	Co(SCN) 4 ²⁻
Fe ²⁺	6 H ₂ O	$Fe(H_2O)_6^{2+}$
Fe ³⁺	$6 H_2 O$	Fe(H ₂ O)6 ³⁺
Fe ²⁺	6 CN⁻	Fe(CN) ₆ ⁴⁻
Co ³⁺	6 NH ₃	Co(NH ₃) ₆ ³⁺
Ni ²⁺	6 NH ₃	Ni(NH ₃) ₆ ²⁺
Ni ²⁺	6 NH ₃	Ni(NH ₃) ₆ ²⁺
	6 CN	Fe(CN) ⁶⁺⁻

LFSE, Cation radius and charge, nature of ligand....

THE LITHIUM BOROHYDRIDE-AMMONIA SYSTEM: PRESSURE-COMPOSITION-TEMPERATURE RELATIONSHIPS AND DENSITIES

By Edward A. Sullivan and Sidney Johnson

Contribution from the Research and Development Laboratories, Metal Hydrides, Inc., Beverly, Mass. Received August 14, 1958

E. A. Sullivan, S. Johnson, J. Phys. Chem. 1959, 63, 233–238

$Li(NH_3)_nBH_4$

E. A. Sullivan, S. Johnson, J. Phys. Chem. 1959, 63, 233 –238

E. A. Sullivan, S. Johnson, J. Phys. Chem. 1959, 63, 233-238

$Li[NH_3]_nBH_4$

Phase n =	Ammonia Content wt%	Volume ų	Volume of NH ₃ Molecule Å ³	Ammonia Density gL ⁻¹	Vapour Pressure at 20°C mbar
1	41	382	43	296	6.7
2	61	588	47	385	24
3	70	652	37	526	96
4	76	840	39	539	110
Liquid NH ₃ (-33°C)	100	-	-	682	1 017

C. S. Cragoe, C. H. Meyers, C. S. Taylor, *J. Am. Chem. Soc.*, 1920, **42** (2), 206–229 E. A. Sullivan and S. Johnson, *J. Phys. Chem.*, 1959, **63**, 233

Stable just below room temperature under vacuum

Y. Guo, G. Xia, Y. Zhu, L. Gao, X. Yu, Chem. Commun., 2010, DOI: 10.1039/b924057h

Using Neutron to characterise ammines

Simultaneous thermogravimetric and diffraction studies

All Runs 42824-43283LiBD $_4$ + ND $_3$ Desorption RTGEM bank 4 (50-74°)(42909-42946 (inc), 42985-43099 (inc) and 43188-43271 (inc) cut)

Li[NH₃]BH₄ - Structure

n = 2

n = 3

$Li[NH_3]_nBH_4$

Tetrahedral Li coordination - 3 $(BH_4)^-$ and 1 NH_3 Edge-sharing chains of tetrahedra run along the b-axis

 $2^{nd} NH_3$ orientation s similar to solid NH_3

Single (η^1) hydrogen bridge bonds seen for BH_4

Layers of B and Li atoms

Li sits in a B₆ octahedra

Octahedra form face sharing chains along the c-axis

Article

Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts

Rasmus Z. Sørensen, Jens S. Hummelshøj, Asbjørn Klerke, Jacob Birke Reves, Tejs Vegge, Jens K. Nørskov, and Claus H. Christensen

J. Am. Chem. Soc., 2008, 130 (27), 8660-8668• DOI: 10.1021/ja076762c • Publication Date (Web): 13 June 2008

R3-MH Chloromagnesite

J. Am. Chem. Soc., 2008, 130 (27), 8660-8668

Mg[NHŞ]6Xçt(Xre Cl, Br, I)

 $Mg[NH_3]_6Cl_2$

 $Mg[NH_3]_6I_2$

Mg[NH₃]₆Br₂

ESRF X-ray diffraction, ID31

All cubic $K_2 PtCl_6$ structure as per Mg[NH₃]₆Cl₂

Structure

Compound	Cubic Lattice Parameter Å	Refinement R _{wp} %	N–H bond length Å	Mg–N bond length Å	MgNH bond angle ∘
Mg(NH ₃) ₆ Cl ₂	10.12257(6)	12.68	0.847(9)	2.158(2)	109.566(9)
$Mg(NH_3)_6Br_2$	10.40694(1)	15.22	0.71(2)	2.165(4)	109.47(2)
$Mg(NH_3)_6I_2$	10.91488(3)	14.82	0.68(2)	2.165(5)	109.35(3)

Saighteinpanearage tier Nthga Ninbanead sen gethth increasing anion size

ESRF X-ray diffraction, ID31

NMR

Compound	Chemical Shift	Compound	Chemical Shift	
	p.p.m.		p.p.m.	
MgCl ₂	-6.9	Mg(NH ₃) ₆ Cl ₂	15.9	
MgBr ₂	-19.0	$Mg(NH_3)_6Br_2$	15.2	
MgI_2	-81.1	$Mg(NH_3)_6I_2$	15.1	

For Mg [1], Hg & X & a sing n Mg l shift nataloshift field incoreasing encorrantomic density at n Mg n bet Mg X 2

Increase in diamagnetic shielding / electron density Very small change in chromicator if graticator of the state of the st

TGA

Starting Compound	Desorption Step 1		n Step 1 Desorption Step 2		Desorption Step 3				
	T ₁₀	T _{1P}	wt%	T ₂₀	T _{2P}	wt%	T ₃₀	T _{3P}	wt%
Mg(NH ₃) ₆ Cl ₂	98	117	32	187	204	10	250	274	9
Mg(NH ₃) ₆ Br ₂	130	155	23	223	243	6	270	292	9
Mg(NH ₃) ₆ I ₂	182	212	18	-	282	-	-	349	-

Increasing with anion radius

Confusing. If no change in Mg-N bonding why the difference in T_{dec} ?

Assumption

The cation is $[Mg(NH_3)_6]^{2+} / [Mg(NH_3)_2]^{2+} / [Mg(NH_3)]^{2+}$

rather than Mg²⁺

Hess Cycle

Simple Ionic Model

Kapustinskii Equation Thus the enthalpy of $\operatorname{Ammonia} \operatorname{Idesorp}$ tion is a more significant factor in the overall enthalpy of reaction ΔH_{r1}

Increasing anion size reduces $\Delta_{\text{Latt}} H$ therefore, T_{dec} increases with increasing anion size $\Delta_{\text{Latt}} H (Mg(NH_3)_6 X_2 - \Delta_{\text{Latt}} H (Mg(NH_3)_2 X_2 \text{ is always negative (favourable)}$ This favourable contribution for the creases with increasing r $\gamma_{L+} + \gamma_{-} - \gamma_{S+} + \gamma_{-}$

Hess Cycle

Thus the enthalpy of ammonia desorption is a more significant factor in the overall enthalpy of reaction ΔH_{r1}

The enthalpy of ammonia desorption (△H_{d1}), which is found from our X-ray diffraction and NMR studies to be essentially independent of X

Why is this interesting?

Metal Ion Ag ⁺ Cu ⁺ Cu ²⁺ Zn ²⁺ Hg ²⁺	<u>Ligand</u> 2 NH ₃ 2 NH ₃ 4 NH ₃ 4 CN ⁻ 4 I ⁻	$\frac{Complex}{Ag(NH_3)^{2+}} Cu(NH_3)_2^+ Cu(NH_3)_4^{2+} Zn(CN)_4^{2-} Hgl_4^{2-} $				
Co ²⁺ Fe ²⁺ Fe ³⁺ Fe ²⁺	4 SCN ⁻ 6 H ₂ O 6 H ₂ O 6 CN ⁻	$Co(SCN)_{4}^{2^{-1}}$ $Fe(H_2O)_{6}^{2^{+1}}$ $Fe(H_2O)_{6}^{3^{+1}}$ $Fe(CN)_{6}^{4^{-1}}$	Compound	Reversible Ammonia Content wt%	Ammonia Density gL ⁻¹	Vapour Pressure at 20°C mbar
Co ³⁺ Ni ²⁺	6 NH₃ 6 NH₋	Co(NH ₃) ₆ ³⁺ Ni(NH ₂) ₂ ²⁺	Li(NH ₃)BH ₄	41	296	6.7
		NI(NI13/6	Li(NH ₃) ₂ BH ₄	61	385	24
Ni ²⁺	6 NH ₃	Ni(NH ₃) ₆ ²⁺	Li(NH ₃) ₃ BH ₄	70	526	96
		Co(NH ₃) ₆ ³⁺	Li(NH ₃) ₄ BH ₄	76	539	110
		EQICIN 4	Mg(NH ₃) ₆ Cl ₂	52	641	2.0
			Mg(NH_)_(BH_)	ΛΛ	357	

Design solid-state storage materials

Compound	Ammonia Content wt%	Ammonia Density gL ⁻¹	Pressure at 20°C mbar	required for complete ammonia release
Li(NH ₃)BH ₄	41	296	6.7	50
Li(NH ₃) ₂ BH ₄	61	385	24	50
Li(NH ₃) ₃ BH ₄	70	526	96	50
Li(NH ₃) ₄ BH ₄	76	539	110	50
Mg(NH ₃) ₆ Cl ₂	52	641	2.0	250
$Mg(NH_3)_6(BH_4)_2$	44	357	-	75
$Ca(NH_3)_8Cl_2$	55	678	700	>100
Liquid NH ₃ (-33°C)	100	682	1017	-
(-33°C)				

Characterising Solid State Ammines

Another way to determine ammonia content?

Dielectric Constant (ε_r)

 $Mg(NH_3)_2CI_2$

MgCl₂

Microwave dielectric resonator

2.45 GHz, TM₀₁₀ mode of a resonant cavity

Experimental Set-Up

Experimental Set-Up

EnSpity Flebended El 540 w

Decrease in frequency due to increasing dielectric losses (DB) and polarizability (DF) of cavity

Dielectric Data

Structural Data

Good Correlation

Ammines are gravimetrically and volumetrically dense hydrogen and ammonia stores

Use a simple ionic model to understand and predict the properties of ionic ammines

We can use simultaneous techniques to develop greater a understanding of these materials as well as developing new characterisation tools

Acknowledgements

David Royse

Oxford / STFC

Jon Hartley

Adrian Porch

Cardiff

Cardiff

Bill David

STFC / Oxford

Lower T_{p_1} , than Mg(NH₃)₆Br₂ (2.03 for BH₄⁻ *cf.* 1.96 for Br⁻)

dihydrogen bonding in the intermediate $Mg(NH_3)_2(BH_4)_2$, as proposed in *Soloveichik Inorg. Chem.*, 2008, **47** (10)

Simultaneous neutron diffraction

CaBr₂

$$CaBr_{2} + NH_{3} \rightleftharpoons CaBr_{2} \cdot NH_{3} \qquad (5)$$

$$CaBr_{2} \cdot NH_{3} + NH_{3} \rightleftharpoons CaBr_{2} \cdot 2NH_{3} \qquad (6)$$

$$CaBr_{2} \cdot 2NH_{3} + 4NH_{3} \rightleftharpoons CaBr_{2} \cdot 6NH_{3} \qquad (7)$$

$$CaBr_{2} \cdot 6NH_{3} + 2NH_{3} \rightleftharpoons CaBr_{2} \cdot 8NH_{3} \qquad (8)$$