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The Prize — 215t Century

(With Apologies to Daniel Yergin)
A zero carbon fuel
That can be used for transportation and power generation
That is scalable from global chemical to global energy proportions
That is an inherently clean fuel with regard to traditional pollutants and CO,
That has a century long history of large scale handling and use
That is competitive in energy pricing to current fuels

That holds promise for low or no carbon production (through CCS on
standard technology or advanced technology for renewables or nuclear)

That appears to be within easy reach through optimization of production,
use and safety regulations
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Price History - Ammonia Industry
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2002 - 2010 - $200 - $350
US Mainland about $100 higher

2012 - 2014 - $350 - $ 650

http://farmfutures.com/mdfm/Faress1/author/252/2014/8/\WFertR081914.pdf
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General Cost Structure of Ammonia Industry
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Historical Price Ranges
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What Happens with a Growing Fuels Market?

Suppose that there is an active
market for 300 mm tonnes of NH3 at
$350/tonne in 10 years...

To displace:

Diesel/Fuel oil at $2.25/gal
. LPG at $1.50/gal
$350/tonne Gasoline at $2/gall

:o B 100 200 300 400 500 600

« Will there be ammonia to supply such a market?
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USER INPUTS ;‘lg AL VALUIEE
ALLOWED IN GREEN :m": | coRReseonD To case AMMONIA NATURAL GAS GASOLINE LPG DIESEL COAL ETHANOL
CELLS MT NHE PARAMETERS
REQLIRED mPUT ar INPUT Price of NH3 INPUT Price of gas INFUT Price of INFUT Price of LPG INPUT Price of diesel (INFUT Price of coal INFUT Price of
CALCLILATE Tonnes NH3 1.00 5.B6E- delivered to site, §  |delivered to site, 5 [ |gasoline delivered to |delivered to site, 5 [ |delivered tosite, 5/ |delivered tosite, 5/ (ethanal delivered to
for your scenario in D4 per tonne mmibtu site, § f gal gal gal tonne site, 5 [ gal
OPTIONAL USER:
DEFINED VARIABLE.
ENTER VARIABLE NAME
| THIS CELL. ENTER [1T 0.0 350 530.00 54.00 54.00 54.00 550 55
NH3 BASIS] M ©5.
ITERATE D TO ACHIEVE
DESIRED QUANTITY IN DS
MMETU |or 1000 CF gas Tonnes MH3 for 21.3 MMETU gas for 213 Gal gasoline for 21.3 Gal diesel for 203 Tonnes coal for 21.3 Gal ethanaol for 21.3
equiv) contained in NH3 — 4,000, 45 MMETU MMBTU MMBTU ol LPG or Z13 MASTY MMBTU MMETU MMETU
::_:!TU‘“M“M for 324 187,616, i 213 172 234 154 14 253
TCF natural gas required LasE08 Tl M3 Fuel Cost (for 21.3  |Gas Fuel Cost (for 21.3 ?:T:_::::’:,I Lﬁ:t_”m LPG Fusl Cost [for 213 [Diesel Fusd Cost (for 21.3 [Coal Fuel Cost {for 21.3 '1-'jr_'“:_::tillu J
for NH2 i mbku) - This Scenario | mimibtu] - This Scenaria | o membt] - This Scenarda |mmbtu) - This Scenara |mmbty] - This Scenarie |,
Scenario Scenario
:"::":H";“" produced | | s ean) 9,263, $350 5639 5688 5936 4624 $52 $1,26
x Global ammania il P e “I:uhlmmzljmhtuatm'mmga lewh from 21.3 mmibtu at| kwhfrnmzl_lmmhtultmmzrj .
industry iR o ;:;’;cmm"“m“"” mcm“"“[‘“""“ 35% efficiency (zoal like) :::;‘m“"“' Gsaz/nh3 | co% efficiency [coal llke] |35% efficiency [coal Hke) ::: efficlency (pasfok3
1 oF Werld Scale HeR 1.25E-06| 7T 2800 28004 2200 2800 2200 2200 28004
Plants =
Number of 60,000 chm 2005 Fuel cost for power, Fuel cost for power for | Fuel cost for power, Fuel cost for powes, Fuel cost for power, Fuel cost for power, Fuel cost for power,
wessels Sfkwh from NH3 power, 3/lowh from gas  |45/kowh from gasoline % fowh from PG 4 Mowh from diesel % fowh from coal % fiewh from coal
LA aauzs 7, $0.125 50.228 50313 $0.334) $0.284) $0.024) $0.452
radlcar deliveries
haediphalliiclalic 1.006.06 5. AMMONAHOY BN RO/ MATURAL GAS GASOLINE LPG DIESEL COAL ETHANOL
pipeline ccs HARVEST
— — T COZ per 21.3 TCO2per 213 TCO2 per 21.3 mmbty, |1 COZ per 21.3 mmbty, |1 002 per 213 mmbty, |7 CO2 per 218 mmbty, |TCOZ per 213 mmbtu, |1 002 per 21,3 mmibty,

|- :‘ME - 2E1E0D| 16,475,03 mmbtu only mimbtu,cnly praduction, | NOT COUNTING JOUNTING NOT COUNTING NOT COUNTING NOT COUNTING NOT COUNTING
powms plants production, no €65 | 602 harvest LIFECYCLE LFECYELE LIFECYCLE LIFECYCLE LIFECYELE
fofLOMW plantsthat | o pipm 188, 1.93 0.58 1.23 165 1.48 1.68] 2.42 0.33
can be run for 1 year, 45%
Equivalent # of & mtpa
LNG train (BTU basis) i o .
Tommes LNG squbvalest asy 240350l HAWAII distillate, resid and coal import (125 T BTU)
Mitric Tonnes coal equiv 1.04) 6,097,
Fosmes oll squbvalent Gas price - 540 per mmbtu
(ToE) e R

Power - 5350 per mwh {about 80% from coal, resid and fuel ail)
Tonnes resid equiv 0530 3,107,

This could be displaced by 6 mmt nh3 (about 7.5 ammonia plants)
al LPG equiv 234 1,371,942,/ R . .

About 150 cargo ship deliveries per year.3
Gal Gasoline equiv 72| 1,008,436, H ., '

Fuel cost for ammonia per year - $2.0 bb. Fuel cost for power ('free' heat from CHP) - $125 per
Gal Ethanol equiv 53 1,483,339, MWH.

Scenario Model

* Inputs are tonnes NH3
and unit costs of fuels.

« Outputs are parameters
of the scenario and
relative economics.

« Example parameters —

« # of ammonia plants

« # of railcars and ship
cargoes
MWh of power

« Tonnes of oil, coal, Ing
equivalent

» Tonnes of clean water
from NH3 combustion

Comparative costs for

equivalent BTU’s from

various fuels

/\
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LNG 2012 Total Trade - 325 BCM

MODEL RESULTS COST, THERMO AND CO2 MATRIX
TR Global LNG
= NATURAL GAS GASOLINE 6 DIESEL COAL ETHANOL OME O a
€ PARAMETERS

INPUT Price of gas |INPUT Price of INPUT Price of LPG  [INPUT Price of diesel [INPUT Price of coal  [INPUT Price of INPUT Price of DME|
5, 3 X7

$/ (deiveredtosite,$/ (delivered o site, $
lgal

e
menbt site, $/ gal sl jroana [sita, /g2l

LNG Global trade 2012 was
o, ' equivalent to 600 MM TPA Ammonia

mnasry for 1000F gas

loot dicselfer 213 [tonmes cositor213  [Galethanoifor 203 [Fomnes
ol LPa for 20.3 MmagTu [0

neTy o 213 mmmTy

: - = This is equivalent to 4 X current global

- : ammonia business.

he)

0] 0] 0o 2100

This is a proxy of low cost, large scale
M’ | oo | osome | we | wea | ou | oo | v natural gas available with capability

TCOZper 113 mmbt, |1 CO1 per 1.3 mmbtu, |1 COZ per 1.3 membtu, |1 GOZ per 213 menbtu, [T COZ per 213 mmbeu, |TCOZ per J13 mmbtu, [T COZ per 113 Feozperain
NG not covtvg noT couwTivg jnot 0T COUNTING [nor counmg o o

e e e for industrial construction around the
CASE NOTES world for commercial use.

325 bem (*.90 mmtoe/bem) equiv to about 300 mm toe

This is equivalent to 600 MM TPA ammonia (4 X current ammonia industry)

LNG market does not include:

Medium sized resources (< a few
TCF)

Difficult access to deep port (e.qg.,
Alaska)

Political barriers (e.g., US shale gas)
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What Happens with a Growing Fuels Market?
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_cUrrcnt Global LNG Market
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* There is low cost, commercializable natural gas available for low cost ammonia
(especially considering the growing amounts of gas not available for LNG).



oD 0 O AND CO
USER INPUTS ":“““ ‘"-"mw
ALLOWED IN GREEN [0 s mw" - AMMONIA NATURAL GAS GASOLINE LPG DIESEL COAL ETHANOL
CELLS MTNH3 | PARAMETERS
REQUIRED wipuT or INPUT Price of NH3 |INPUT Price of gas  [INPUT Price of INPUT Price of LPG  [INPUT Price of diesel [INPUT Price of coal [INPUT Price of
[CALCULATE TonnesNH3 | 1.00 4,609,757 delivered tosite, $  [delivered tosite, $ / |gasoline delivered to |deliveredtosite, $ / |delivered tosite, $ / |delivered tosite, $/ [ethanol delivered to
for your scenarig in D4 per tonne mmbtu site, $ / gal gal gal itonne site, $ / gal
[OPTIONAL user-
DEFINED VARIABLE.
[ENTER VARIABLE NAME
N THIS CELL ENTER (1T 0.00} $350 $25.00 $4.50 $3.50 $4.00 $125 $4.50
[NH3 BASIS) IN €S,
ITERATE D4 TO ACHIEVE
[DESIRED QUANTITY IN DS
Tonnes NH3 for 21.3 for21.3 .3 i 13 [T i for 21.3 213
MMBTU contained in NH3| 2132 98,270,799 MMBTU MMBTU MMBTU Gal LPG for 21.3 MMBTU MMBTU MMBTU IMMBTU
:::’"’ S Teases for 0| 147,512,223 19 213 3 234 156 10| 259
g (Gasoline Fuel Cost [for T 9 R [Ethanl Fusl Cost (for
e i o e et bl e e e s
Scenario Scenario
[orneswaterproduced. | 3 sacan| 7,283,416 $350 $533] $774 $819 $624 $130 $1,139)
from NH3
4 Global ammonia — il kwh from 21.3 mmbtu at|kwh from 21.3 mmbtu at| owh from zummwm:"’“"“'““""""b"‘“mcmn.;mmmunmmum zi.imwu.l:wﬁhomll.immn
sty X (& (gas 35 efficiency (coallike) | 5% #Micency (gas/nh3 (coal Bke) |35 p ) [{5% efficency (gas/nh3
like) like) like) llike)
# of World Scale NH3. iz 5.76) 2800] 2800| 2209 2800) 2200) 2200
Plants.
[Number of 60,000 com 244808 112 Fuel cost for power, Fuel cost for power for  |Fuel cost for power, Fuel cost for power, [Fuel cost for power, Fuel cost for power, |Fuel cost for power,
vessels S /kw from NH3 power, $/kw from gas  |$/kw from gasoline $/kw from LPG $/1w trom diesel $/kw trom coal I$/kow from coal
[Number of 80 tonne
pprempledaes oous| 57,621.96) $0.125 $0.190 $0.352 $0.293 $0.284 $0.059| $0.407]
0 of 1 MM TPA NH3 AMMONIA, NO |  AMMONIA w/
‘10004 a NATURAL IN I Al THAN(
o 61 HARVEST URAL GAS GASOLINE PG DIESEL COAL E oL
(MWh from 45% efficient [T CO2 per 21.3 T CO2 per 21.3 [TCO2 per 21.3 mmbty, [T CO2 per 21.3 mmbty, [T CO2 per 21.3 mmbty, |TCO2 per 21.3 mmbty, |T CO2 per 21.3 mmbty, [T CO2 per 21.3 mmbtu,
gt “ 281000 12,953,417 il mmbtu,only [ mmbtu,only production, [NOT COUNTING NOT COUNTING NOT COUNTING INOT COUNTING NOT coUNTING INOT COUNTING
el .- production, no CCS _|CO2 harvest UFECYCLE UFECYCLE UFECYCLE UFECYCLE LUFECYCLE JUFECYCLE
# of 10 MW plants that
i 5 v o2 Ve 4% 321005 147.79| 1.93| 0.68| 1.23] 1.65| 148, 1.68 2.42 0.33
Equivalent # of 6 mtpa A
LNG train (BTU basis) iy L O
e, - 1850000 ] Alaska has massive reserves of gas on the North Slope following years of re-injection for EOR. There is no exploration or drilling cost
required for this gas, but there is no current way to deliver it to market. The |ead|ng candidate now is a $50-$60 BB project to build a
pipeline to Anchorage and a LNG export terminal. In addition to taxes, revenues and empl , the devel and ion of
[Metric Tonnes coal equiv 1.04) 4,794,147
this gas is critical to Alaska’s future viability. Oil production is declining to the point that operanon of the Trans Alaska pipeline is
Tonnes oil equivalent e sosen increasingly difficult. Anchorage, Fairbanks and many internal towns have very high and increasing energy costs. Most run on imported
(Tog) - diesel. Anchorage is running low on it's local gas field.
Tonnes resid equr 0330 2,443,171 s e . B . i "
hoan The gas pipeline/LNG option is facing many barriers. It is very uncertain what the LNG market will be 8-10 years from now (after $60 BB is
on the ground). Thisis not a commercial risk. Itis a ‘bet the state’ risk.
Gal LPG equiv 24 1,078,683,132
Ammonia production on the North Slope (with very cheap gas, probably strong support from government and industry players and ample
Tt Comolie sy 7 792878.2000 o\ cineering infrastructure) for delivery to Alaskan cities and towns (and eventually Asia) could become a very attractive proposition.
! equiv m 1, . , A i : 3
e 116626851508 o |t doesn’t require mega-investment to prove the markets or even to build the first plant.
® The investment is incremental ($1 BB at a time with 3 yrs to revenue, rather than $50 BB with at least 8 yrs to revenue.) Further
Prcenen ot investment is based on success and market development. If market is bigger than originally envisioned, ‘debottlenecking’ is simple —
build another ammonia train.
Total NH3 cost $ $ 1613414941

Fuel cost for power,
$/kwh from NH3

Price NATURAL GAS

Total Natural Gas cost §

Fuel cost for power for
[power, $/kwh from gas

Price GASOLINE

[ Total Gasoline cost $

[Fuel cost for power,
$/kcwh from gasoline

Price LPG

Total PG cost $

[Fuel cost for power,
$/kwh from LPG

Price DIESEL

$ 0125

$25.00)

$01%

$4.50)

$ 0352

$3.50)

$0293

$ 2454,695,59

$ 3,567,951,899

$ 3,775390,963

The market risk is much smaller (ammonia is a valuable, fungible commodity that is easily shipped to buyers in a deep market).
It is much more flexible in market distribution (e.g., reduced internal AK demand in summer sends product to Asia seasonally). It can
be delivered to all towns, cities, facilities in Alaska at any scale required (for power, heat and transportation fuel (gasoline/diesel very
expensive in Alaska).

It can be stored easily for winters.

Itis ideal for CHP. Heating fuelis very dear in Alaska’s climate isolated from finished fuel products. District heating and small scale,
clean power gen are very valuable in this environment.

It is not as vulnerable to earthquak botage or high pressure pipeline failure as a gas pipeline.

THIS MODEL REFLECTS AMMONIA PRODUCTION EQUIVALENT TO 10% OF THE PLANNED CAPACITY OF THE LNG/PIPELINE PROJECT.
This reflects a right-sized scenario as an alternative to the gas pipeline.

We can expect that construction of ammonia plants would be considerably more expensive than in Texas or Louisiana. Especially for the
first few (getting the labor force up there and trained, logistics, etc). But this is actually a less capital intensive project than the pipeline
(and it stays in one place). If the ammonia (and methanol/MTG) industry develops on the North Slope the HR/engineering infrastructure
will have a steady stream of projects for years to come.

Under these circumstances, we can expect that capex for construction, operation and logistics to trend down toward today’s costs (even
as those costs fall further). In Alaska, higher capex and operating costs will be offset by very low finding and lifting costs for the gas
(much as the world is very willing to operate in very harsh and expensive environments to produce oil).

Alaska LNG Project

Alaska has massive store of low cost gas
from decades of gas re-injection.

There is a $60-$70 BB, 6 year project
proposed for building a gas pipeline to
Anchorage and LNG export to Asia.

10% of the proposed gas would feed 5-6
North Slope ammonia plants.

This can be done in parallel with gas

pipeline project, but is much more flexible
and quicker payback.
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] R ot o b R KA Global Nuclear
R e e g Nuclear power plants do not follow load
S O I B T e (they operate full tilt 24/7). In general, the

paaT, power overnight is not highly valued and

ienesruorsovocrgas | a1y gasfor 213 [l gasotee for 213 3 3 fostetmnattornns 3
equim) cominediamir | 7} st Jusary anesry [H178 for 213 MMV fssaru: sy eseery 213 naTy sy

e | ] e i - I T I seeks big markets at low prices.

o roeT Cov

s i ) s o s [t T S i T Scomate [t T Scomt [k TS [£13 0 i e
s
bassgeds e 103,648,000 $350 $320 $516 s468| 5593 352 $759) $196) 5208
e ] L el
e oan SR E it bemiz s s ey Lom/ o [t 5% [t 0
: = = o OT global nuclear were 10 be
e
o - i = = = = S = = =
| Number of 60,000 chen 1 uel cout tor power. [ wet for power for  |Fuel cont for power, [t cont tor pomer. 1 el cont tor power. Jruet cost s 1 el cont for power. [roshonst for powes; L) out for power H H H
= o m el e e e e e e converted to ammonia at 65% ef’f|c|ency’
E— ;
— s 20,000 $0.125) $0.14 $0.235 $0.167) 50.269 $0.024 0271 $0.070) 50.074] . .
o[ o 0 | o] this would be equivalent to 65 MM TPA
ol Mo vo | o[ T = o~ = oo ome [ e
e e e e st
JAR S S ot | el 184,336,000 [l bt ooty |menbtu, omdy produxction, |NOT COUNTING NoT counTing InoT counTing. wor counmmg vot counng. ot counting |menbes, nOT fmmbes, NOT -
power st e oew o et [ocves bk g avat sk [cas s trerts ammonla (about 45% of Current global
e
Rl o= ~ = = 5 = =

e i o production.)

Global nuclear power - 2500 twh (equivalent to 8.5 Quad at 100%, sbout 21 Quad heat at 403

 romnes NG cquivatent ouf 26,896,000)
Levelling Base Load for existing nuclear.
ctrc Tonnes conteauiv | 104 68,.224,000)
Assume typical nuclear plant producin r at incremental operating cost of $0.02 per kwh (? Is this a reasonable number, i
Tonnes o cquent = - ume typical 1 GW nuclear plant producing power at incremental operating cost of $0.02 per kwh (2 Is this a reasonable number, it

N This requires commercialization of low

The theory of this case is that the plant can devote 25% of its output 24/7 to ammonia production (once the infrastructure for local
production of ammonia power is in place.) During peak hours, the ammonia power production (sized to 25% of baseload (250 MW))

L0 ) ssasomocnlll i upplement the 750 MW from the plant, During pesk summer months, the ammonia production could be scaled back to provide ca |ta| e I ectro I t| Cc rod u CtIO n teC h no I 0
up to 125% of the original 1 GW. .
Sa o s
As infrastructure builds, this could theoretically grow to 100% ammonia production from the nuclear plant. )
e i o i [
The case is 25% of current nuclear converted via Electrogen/FAM. This is 625 twh. If we assume that 65% (?, efficiency of power
o -

converted to ammonia BTUs) (410 twh of this energy is converted to ammonia (21.7 mmbtu per tonne)

— There are several additional advantages:

p———
/v trom pc3 e The requirement of 5000 god Electrogen/FAM modules is about 15000. The initial capex estimated from Electrogen is $275K per unit

We can expect that large scale manufacture and learning curve to come down to $200K (and probably further). At $200K, this would be
rice naTuRAL GaS s15.09

about $388 capex. At $0.02 per kwh and sales price of $350/tonne, the capital will be paid off within 2-3 years. It should be noted that $3
88 is a very small investment for upgrading the worlds’ nuclear fleet to 25% flexibility on diurnal peak shaving and increasing effective

i [ e ot e e Production of fuel for regional grid

et cont o pomer tor
oower o gas | S134 The other cost associated with this infrastructure is power/CHP devices to convert the ammonia to useable energy. We will use a

‘theoretical’ MHI ammonia MegaNinja as a prototype (nominally sized 35 1.5 MW — 10 MW, power efficiency at 45%, additional heat t b I t b I

hassorn | wa sl smeny e ol stk s i et ghe e e stapbilization (e.g., renewables
10 MW machines (about $17 88).

S— s mmses

S At 45%/30% efficiency, these units will produce 185 Twh of power and 125 Twh eq (.42 Q, 420 mm mmbtu) of heat/AC. At a cost of $350
s/t trom gamone |5 028 per tonne ammonia, the total cost of 65 mm tonnes of ammonia in this scenario is $22.8 8. If we value the heat at $3/mmbtu
(conservative), the fuel cost for poy is about $0.12 per kwh.

== b Locall trolled DG/CHP with NH3
ocally controlle wi

ol 06 cont 5. s 0mos000 il dwellings, retal, food (refrigeration), light manufacturing, banks, hospitals,etc) that can best utilize uninterruptible power and CHP
(absorptive AC, medium pressure steam, water/space heating, etc)

[ pe—
7wt trom 17
One of the main attributes of this strategy is that it is incremental. The ammonia production element can be started at small scale (e.g.,
(. s 5000 tpd) and can initially serve ammonia fertilizer markets as well as dedicated offtake to energy. The energy market can also be started .
at small scale (e.g., 1.5 MW for high value CHP or dedicated uninterruptible power) and it can be supplemented or backed up with Ar b I t ra e Of N H 3/ Owe r b th e n u C I e ar
o s cot . s sumssos ] commercially available ammonia. The real beauty is that this market can grow regionally around existing nuclear plants. It can (and wil)

grow organically according to purely economic drivers allowing entrepreneurs and power customers (and grid management/regulators)

;:‘_;",""""v 5 028 to develop their own cost/risk/benefit energy profile at the same time they are growing zero carbon and efficient energy use. Iant
rice cont 350 |
ol Cont cont s s saemm

[p—

$/hwh from cosl e

rice ervanon 5100

Tota tthanci cont 5 s

P —

57w trom e fan

[egatonnes Cox voved

w0 08 hrurastin | 53007 3

s,
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Overview of Sources (for future development)

» Alaska North Slope
« US Southwest/Fracking in general

« Middle East / North Africa (lowest cost ammonia currently, lots of
headroom)

« Canada Hydroelectric (10’s of GW of low cost power on contract)
 Iceland (practically unlimited geothermal at 3.7 cents/kwh)

* Big Wind (depends on low capex electrolysis tech, allows local
grid stabilization)

« Off Peak Nuclear (depends on low capex electrolysis tech, allows
local grid stabilization)

CLEANAIR
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Where Are the Markets?
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- e New England Gas Demand

USER INPUTS AL ALLVALUES
ceus T

AMMONIA NATURAL GAS GASOUNE w6 DIESEL COoAL ETHANOL METHANOL OME

REQUIRED o or INPUT Price of NH3  [NPUT Price of gas  [puT Price of |NPUT Price of 196G [INPUT Price of diesel |INPUT Price of oal (NPUT Price of (NPT Price ol linpuT price of OME|
$ ™ ite, $/ s/ .5, s

Jcascueat Tommes s | 1.00| 11,727,179 S
roc

== | s e . e L sl T New England and Mid Atlantic running

IONAL USER.
FINLO VARABLE

e e S e e [ e short of gas and fuel oil for power and

BASIS) IN G5,
LRATE 04 70 ACHIEVE

SIERE heating. Polar vortex put great

ey for 1000 CF s 213 N 3 ot et for 21.3 3 n3 Tonnes OME for 21.3
eau) contained mmaa | ] Ssesmin] [0l LG for 213 MMSTU g7y usssTy nsasTy 213 Ty ™

e | ] e 4 - - 2 ] I I pressure on power production last

e Foel Con for

[owe romic

e e e e e winter. Problem is getting worse with

o rom 31 e o T3 mbE o from 71 5 [ rom 313

T P s e s = shutdown of coal plants.

e —

— 1064 2 o e 2xd - 2 20
[—y——" ol i terpmchr P e
fvessets A ) 5wt fom M1 ower, $/kwh from gas S/kwhtrom dieset |$/kwh trom coal .
rsember of 80 tonne z H e -
= ama] 1465 $0.125] $0.091] 50313 $0.209) $0.284) $0.047] 0361 5010 $0.107] It IS Very dlﬁlcult and expenSIVe to
|# of 1 Mane TRA N3 = AMMONIA, NO AMMONIA w/
100 17| ccs HARVEST NATURAL GAS GASOUINE w6 DIESEL COAL ETHANOL METHANOL OME . . .

S o e TeoTper s mb, [T COTperTL) s [T COTper i3 w7 COTper T3 mebhs [TE0Tper T3 ey [TCOTpe HI e (TGO [TEOTp iy )
i Lol [ 32,953,373 [l ety mmbtionty production, [T COUNTING  [NOTCOUNTING  [VOTCOUNTING  [NOTCOUNTNG — [WOTCOUNTING  [NOT CouNTING | membeiuoT b o . 0
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Gas supply through pipeline and LNG cannot supply winter needs and storage is not adequate to arbitrage costs through the year.

i W 1215626508 Gas prices annually cycle $10 per mmbtu (see ref tab). NY 10-20 Vermont 15-25. H b t l N 3 | t
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Itis ent to about 2800 FAM units (about $1 BB if FAMSs priced at $350 K). These FAM units could be supplied by F I I t I b t
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management/arbitrage opportunities. We can expect support and assistance from utilities.
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Hawaii distillate, resid and coal import (125 T BTU)

MODEL RESULTS COST, THERMO AND CO2 MATRIX - - . -
- Hawaii resid/distillate

useRINPUTS |
ALLOWED IN GREEN AMMONIA NATURAL GAS GASOUNE (L9 DIESEL COAL ETHANOL METHANOL

INPUT Price of gas [INPUT Price of [INPUT Price of LPG  [INPUT Price of diesel [INPUT Price of coal  [INPUT Price of mm‘ L]

delivered to site, 5/ |gasoline delivered to [deliveredtosite, 5/ [delivered tosite, 5 /
bt site, $ / gal = lgat ltonne site, s / gal

|/ tonne

Most of Hawaii’s electricity is generated
e, from heavy hydrocarbons. This is
= ‘ e i N expensive (HI power more than 3X cost

P 4 154 r

T e el e S e ol el of mainland) and environmentally

mmbtu) - This Scenario. [mebstu) - This Scemaria |mamibta) - This Scenaria |mmbtu) - This Scenario

R B e s destructive, 35-40 cents/kwh). Hawaii is

[SARn 108 S J43% efficiency (sa/nh3 jmmbu at 45%
sl

|35 etticiency (co e

4 - . working very hard to reduce

0 v
wer, [foctcomttorpomer,  [Fuel castfor powe, ruet cost ror pawer.

Fuetcosttor powes, (R cost tor power for [fuel cost for powes, el cost tor pos et

- R L hydrocarbon reliance (small scale LNG,

$0.125 0228 $0.313) $0.284) $0.024} $0.452 $0.074

| s | ewase e renewables energy efficiency).

TeoTperiis TCOT per 113 menbi, |1 COZ por 113 mrm T per 313 mmbuw, [T CO3 por 33 mumbrs, [V COF por 113 mmbtu, [TCOZ per 313 mambts, [TCOT por 113 Ipe s
b, onby production, [NGT COUNTING NOT COUNTING jnoT counTing InoT COUNTING vt counng INoT couNTING menbi, HOT (b, 0T
002 harvest urecvar urrevar lurecveur urtcrar urrcvar jurcvar counmng urrevews feouwmmia urrcva

0.68) 123 ¥ 148 1.68) 2.2 0.33) 180 1.80

T T There is great scope for this since
HAWAII distillate, resid and coal import (125 T BTU) i .
. power is so expensive. But the
Power - $350 per mwh (about 80% from coal, resid and fuel oil) Cheapest Way |S through am monla_

This could be displaced by 6 mmt nh3 (about 7.5 ammonia plants)

About 150 cargo ship deliveries per year.3

;;;:‘\I:‘Io‘st for ammonia per year - $2.0 bb. Fuel cost for power ('free' heat from CHP) - $125 per DiS pIaCi ng al I Of H I resid , fu eI Oi | an d
Fuel cost for gas per year - $3.7 bb. Fuel cost for power ('free' heat from CHP) - $228 per MWH. Coal abo ut eq u IVaI e nt to 6 M MTPA N H 3

Fuel cost for diesel per year - $3.6 bb. Fuel cost for power ('free’ heat from CHP) - $284per

== " (about 7 plants or 140 cargo ship

P Fuel cost for coal per year - $0.3 bb. Fuel cost for power (‘free' heat from CHP) - $30 per MWH.

e deliveries.) Ammonia at $350/tonne has

Fuel price not the whole story.

=] Ammonia much easier to distribute and store than coal or gas a fuel COSt Of 13 Ce nts / kWh (not

L. Ammonia much cleaner to burn and use than coal, resid or fuel oil.
ricn GASOUNE

: Ammonia can be deployed for power gen at 40%+ efficiency at scales between 250 kw and 50 M. At a cou nt| N g Cred |t for C HP fro m ammon | a

capex of $600- $800 per kw. With turn on/off in a few minutes. Coal and gas cannot.

s e g Small scale, clean combustion (500 kw — 200 MW) greatly facilitates CHP (heating, absorptive AC, hot d Iesel g e n Sets) .
. water). Raising efficiency to 70-80% and displacing other heating fuels (perhaps 50% additional to

electricity.

Ammonia at $250 - $350 per tonne is available from $2-54 gas around the world for this entire market
once the demand is established. That existing demand for fuel oil, LPG, LNG has established much
higher prices.
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awaii Renewable, Distributed Generatio ency by 2020 - 4
oD 0 O AND CO R
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Comsespr Fuel cost for power (no credit for CHP and flexibility in dispatch) at $5500/tonne is $180 per MWh
vo0) o 20020008 This can be delivered by 40 cargo loads
It would be about 500 1MW diesel gen sets deployed in various configurations around the islands.
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Hawaii Alternatives Goals

Hawaii’s goal is to have capacity for 4
MM MWh from Solar, wind and
efficiency by 2020.

This is equivalent to 1.6 MM TPA
ammonia. And likely much more
expensive.
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Midwest Fertilizer, Heat and Electricity

The Mi states ran dangerously low of LPG for heat and farm use this winter with emergency measures
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required. Even with growing availability of propane from shale oil and gas, the infrastructure for delivery and storage
of propane was strained by high demand for drying extra wet crops followed by record cold.

Prices rose to $4-5 per gallon (normally around $2). And a lot of people got really cold and mad.

I've modelled ammonia equivalent to 12.5% of Midwest propane demand (also equivalent to Illinois demand for
ammonia fertilizer). If 12.5% of LPG demand were stored at ammonia facilities at the end of harvesting and the start
of winter (when these facilities are operating low because they are most full before and during planting season), this
could be a substantial cushion for managing the costs and risks of LPG shortages. This is equivalent to 230 MM gal
LPG (replaced by 1 MM tonnes ammonia). The total cost of that ammonia at $350/tonne is $350 MM. The cost of the
equivalent BTUs of LPG at $2/gal is $468 MM and at $4/gal is $936 MM. There clearly is large financial incentive even
without the consideration of risk management.

If Sturman engine 1.0 MW units (40" trailers with Sturman fitted control systems) were sited on farms and
neighborhoods, they would produce well-conditioned power for local use and utility offtake at 45% efficiency. The
units are also ideally suited for CHP (total efficiency up to 75% or so) which can be used for district heating and, very
importantly, crop drying.

One other huge advantage is countercyclical infrastructure use. The ammonia infrastructure is weighted toward
winter and spring (for planting) and the LPG infrastructure is weighted toward summer and fall (for crop drying and
winter heating). The ammonia producers will be happy to have profitable smoothing of their storage and distribution.

MidWest LPG Demand

The Midwestern states ran dangerously low of
LPG for heat and farm use this winter with
emergency measures required. Even with
growing availability of propane from shale oil
and gas, the infrastructure for delivery and
storage of propane was strained by high demand
for drying extra wet crops followed by record
cold.

Prices rose to $4-5 per gallon (normally around
$2). And a lot of people got really cold and mad.

1/8 of MidWest LPG demand is 1 MM TPA NH3.
Even at $500 per tonne, ammonia BTUs are 20%
cheaper than $4/gal LPG.

If ammonia diesel gens were sited on farms and
neighborhoods, they would produce well-
conditioned power for local use and utility
offtake at 45% efficiency. The units are also
ideally suited for CHP (total efficiency up to 75%
or so) which can be used for district heating and,
very importantly, crop drying.

One other huge advantage is countercyclical
infrastructure use. The ammonia infrastructure
is weighted toward winter and spring (for
planting) and the LPG infrastructure is weighted
toward summer and fall (for crop drying and
winter heating). The ammonia producers might
be happy to have profitable smoothing of their

storage and distribution.
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T I e Railroad (displace diesel)

NATURAL GAS

s [INPUT Price
. $ /1

Diesel fuel is the major operating expense
of long haul rail and is being challenged by
increasingly stringent environmental
regulations.

Displacing 20% via blending (or pure
ammonia) requires about 4.5 MM TPA NH3
T pre . and potentially saves a great deal of

e o G mif:izrf"':? i i : m:ﬁ:??f"f ._ - money. $500/tonne ammonia 20% cheaper
case wores than $4/gal diesel

Displacing 20% via blending (or pure ammonia) potentially saves a great deal of money

ammonia 20% cheaper than $4/gal diesel

n emissions (NOx, HC, PM). Pure ammonia eliminates these emissions (with, at worst, simple SCR).

T This could also substantially assist on
A e emissions (NOx, HC, PM). Pure ammonia
eliminates these emissions (with, at worst,
simple SCR). Ammonia blends dilutes
emissions and, likely,substantially reduces
HC/PM with optimization of engines

(requires some research).

Much simpler to implement than LNG rall
(distribution, handling, flexibility for
operations/arbitrage, fuel sourcing). For
example, diesel/LNG blending is not
practical. Fuel switching on the same
locomotive not practical.

/_\
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Global Markets - Overview

Alaska (displace diesel across the state, supply Anchorage, alternate
export market for Alaska gas)

Hawaii (displace diesel, resid and gasoline across the islands)
Northeast/MidAtlantic (energy security, grid stability, displace fuel oil)
Midwest (energy security, grid stability, displace fuel oil/LPG)
Caribbean (displace diesel, resid and gasoline across the islands)
Japan (alternative to expensive LNG and coal, replacing nuclear)
Indonesia (displace diesel, resid and gasoline across the islands)
China (clean cities, rural access, much easier than gas)

Europe (energy security, CHP, DG, fertilizer/fuel)

Africa, South America (ammonia diesel gen, clean cities, rural access)

CLEANAIR
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Rt K| o 193] 0.68 1.23] 165 1.48] 168 242 033 1.80 1.80)
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BT aal 1665 Local Energy Station Dispensing 1.75 Mm Gals Per Year Of Ammonia
Atypical high volume gasoline station can easily dispense 1.5 MM gallons of multiple grades of gasoline/diesel in a year. This case
R | 435 examines a ‘neighborhood’ ammania energy station of approximately the same scale that could provide power and heat to the
BB neighborhood (or condo or office building) in an urban environment. This station would house a diesel genset/CHP unit running on
=) s 20300 ammonia. The prototype for this is the MHI MegaNinja gas-driven genset (delivered on 40 trailer, 1.5 MW generator operating at 42.5%
efficiency, designed for combined heat/power taking efficiency up to 75% for medium pressure steam/space and water heating and
e o 215208 adsorptive air conditioning.)
ipide d - 950,116 The general complexity of these stations would be less than 3 gasoline station (single grade, dispensed almost entirely to the generators
instead of retail interface with hundreds of transactions to untrained public per day). But tank volume, general regulatory requirements
G0l Gasaline oquiv ” 69837608 and fuel delivery logistics would be similar.
a1 txhancl oquiv = 102726208 The average weekly volume would be about 35,000 gallons. We can ‘design’ for 40,000 gal/week peak usage. A typical tank size for
o (hanct e =) 10272528 The average weekly volume would be about 35,000 gallons. We can ‘design’ for 40,000 gal/week peak usage. A typical tank size for
ammonia distributors is 30,000 gallons. So, with one 30,000 gal tank (installed underground for safety, security and ease of
Frce s 3% temp/pressure maintenance), we could operate with three a week deliveries from 11,500 gal tank trucks (typical size ammonia trucks).
I'm sure the logistics can/will be optimized beyond that, but this will do for illustration
Totst 3 cont . g
P Very rough project costs would be about $1.2 MM for ammonia ja, $0.1 MM for tank, and land.
cont for power,
$/iwt trom to03 s oz Roughly $1.5-52 MM.
Frice NaTURAL GAS saso0 With these delivery assumptions (1.75 MM gal ammonia/year), a 1.5 MW Meganinja can be supplied 85% of the time (.13/.15). The unit
would be available 100% of the time (minus maintenance) and could be run at the cost of more frequent ammonia deliveries. We can
Totat Naturs Gos cont . s 1297274 ll model this as
Restpend gl A CHP unit that is integrated into the local electrical grid, sells excess power into the grid and buys power from the grid when power is
offered at below cost/value of local power and heat supply. For example, buying low cost base load power at night from utility based on
rice GAsOUNE s300 TOD pricing and operating during the day to ease peak power demand on the utility’s peakers)
Tota Gasctne cont s 295,125 ll Runs 85% of the time routinely (providing 1.5 MW for 7450 hrs for 11,200,000 kwh and 26,000 mmbtu of CHP heat (calculated as 30% of
the mmbtu’s in the 1.75 mm gal of ammonia)). We will assume conservatively that 15,000 mmbtu of that heat would be effectively used
ot con or power, I
or sold
$/kowh from gasoline .
pice 6 5209 At$300/tonne, 1.75 mm tonnes of ammonia costs $1.2 MM
Total 9. cont . s 1300231 [l f we assume New Atlantic urban , then $0.14 per kwh and $14 per MMBTU are conservative prices for
residential customers (especially conservative in the winter). Sales (or avoided costs of gas/power purchases) of the power and CHP heat
Fot contorpower, [ from 85% operation at these prices would yield $1.57 MM for power and $0.21 MM for heat for a total of $1.78 MM
ko trom 196
oo piesst ) At $300/tonne ammonia, the fuel cost for power (even rejecting all the CHP heat) is $0.107 per kwh, So, for the additional 15% of the
year that kwh are valued at higher than $0.11 per kwh, the generator can be operated for additional profit. For example, in New
o Dt s s 240831 [l Eneland/Middle Atlantic region, retail electricity prices are uniformly above $0.16 per kwh. So, if we are running a 1500 kw unit for 15%
of 3 year (1300 hrs), we are selling 2,000,000 kwh at a margin of $0.05 (bringing in $100,000 extra revenue)
ot con or power,
o
Overview on very rough numbers running the business blind (i.e, selling at average prices, managing CHP heat and extra power sales
T - loosely)
Fuel cost at $300/tonne - $1,200,000
T " 2111 JJ] Revenues from 85% base operations (contracted at conservative prices) - $1,780,000
Opportunistic sales of power for other 15% of generating capacity - $100,000
Foctcomttorpomwer, | 400 Operating margin of $680,000 to cover capex/opex/profit.
$/wt from cont
e R o Upside potential on these revenues
 rocel Exhanct cont § s 3001787 Capacity payments from PJM RPM (market to pay for guaranteed capacity in PIM grid). In New York, this is about $200 per MW (paid
whether the unit is running or not). This is $73,000 per year.
Foctcot tor power, |1y
/4wt trom ehamot Potential payments from reliability premiums from the grid (this power is much more reliable than grid provided power (no risk from gas
MegaTonnes CG3 soved deliverability, downed power lines, frozen equipment, price spikes from hot summer afternoons, etc)
it 10wt harvest v | 530647 o

wav)

Local Energy Station Dispensing 1.75 Mm Gals Per
Year Of Ammonia

A typical high volume gasoline station can easily
dispense 1.5 MM gallons of multiple grades of
gasoline/diesel in a year. This case examines a
‘neighborhood’ ammonia energy station of
approximately the same scale that could provide
power and heat to the neighborhood (or condo or
office building) in an urban environment. This station
would house a diesel genset/CHP unit running on
ammonia. The prototype for this is the MHI MegaNinja
gas-driven genset (delivered on 40’ trailer, 1.5 MW
generator operating at 42.5% efficiency, designed for
combined heat/power taking efficiency up to 75% for
medium pressure steam/space and water heating and
adsorptive air conditioning.)

The general complexity of these stations would be less
than a gasoline station (single grade, dispensed
almost entirely to the generators instead of retail
interface with hundreds of transactions to untrained
public per day). But tank volume, general regulatory
requirements and fuel delivery logistics would be
similar.

The average weekly volume would be about 35,000
gallons. We can ‘design’ for 40,000 gal/week peak
usage. A typical tank size for ammonia distributors is
30,000 gallons. So, with one 30,000 gal tank (installed
underground for safety, security and ease of
temp/pressure maintenance), we could operate with
three a week deliveries from 11,500 gal tank trucks
(typical size ammonia trucks). I’'m sure the logistics
can/will be optimized beyond that, but this will do for
illustration.
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Very rough project costs would be about $1.2 MM for ammonia MegaNinja, $0.1 MM for underground tank, connections
and land. Roughly $1.5-$2 MM.

With these delivery assumptions (1.75 MM gal ammonia/year), a 1.5 MW Meganinja can be supplied 85% of the time (.13/.15).
The unit would be available 100% of the time (minus maintenance) and could be run at the cost of more frequent ammonia
deliveries. We can model this as

A CHP unit that is integrated into the local electrical grid, sells excess power into the grid and buys power from the grid when
power is offered at below cost/value of local power and heat supply. For example, buying low cost base load power at night from
utility based on TOD pricing and operating during the day to ease peak power demand on the utility’s peakers)

Runs 85% of the time routinely (providing 1.5 MW for 7450 hrs for 11,200,000 kwh and 26,000 mmbtu of CHP heat (calculated as
30% of the mmbtu’s in the 1.75 mm gal of ammonia)). We will assume conservatively that 15,000 mmbtu of that heat would be
effectively used or sold.

At $300/tonne, 1.75 mm tonnes of ammonia costs $1.2 MM

If we assume New England/Middle Atlantic urban environments, then $0.14 per kwh and $14 per MMBTU are conservative prices
for residential customers (especially conservative in the winter). Sales (or avoided costs of gas/power purchases) of the power
and CHP heat from 85% operation at these prices would yield $1.57 MM for power and $0.21 MM for heat for a total of $1.78 MM.

At $300/tonne ammonia, the fuel cost for power (even rejecting all the CHP heat) is $0.107 per kwh. So, for the additional 15% of
the year that kwh are valued at higher than $0.11 per kwh, the generator can be operated for additional profit. For example, in
New England/Middle Atlantic region, retail electricity prices are uniformly above $0.16 per kwh. So, if we are running a 1500 kw
unit for 15% of a year (1300 hrs), we are selling 2,000,000 kwh at a margin of $0.05 (bringing in $100,000 extra revenue).

Overview on very rough numbers running the business blind (i.e, selling at average prices, managing CHP heat and extra power
sales loosely)

Fuel cost at $300/tonne - $1,200,000
Revenues from 85% base operations (contracted at conservative prices) - $1,780,000
Opportunistic sales of power for other 15% of generating capacity — $100,000
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Upside potential on these revenues.

Capacity payments from PJM RPM (market to pay for guaranteed capacity in PJM grid). In New York, this is about $200 per MW
(paid whether the unit is running or not). This is $73,000 per year.

Potential payments from reliability premiums from the grid (this power is much more reliable than grid provided power (no risk
from gas deliverability, downed power lines, frozen equipment, price spikes from hot summer afternoons, etc).

Well positioned availability of reliable power can be very valuable during high stress in the grid (prices have spiked above
$1000/MWh and $100 per mmbtu on several occasions over the last few years). This value can be captured via market/auction
transactions on advanced grid markets like RPM or through opportunistic transactions in real time.

Upside revenue potential for similar projects in other regions of the world. Examples:

Island economies that must generate their power from fuel oil (Hawaii, Caribbean, Indonesia). Fuel oil is $30-$40 per mmbtu. It
is dirty and must be located away from populations (and especially resorts). That also makes it very difficult to capture and utilize
the 1/3 of the btu’s from CHP that clean ammonia engines can provide. These units can provide clean power at less than half the
cost and, on top of that, very efficient heat and air conditioning (absorptive chilling).

Medium scale distribution/retail (frozen/refrigerated foods), light industry and agriculture utilizing refrigeration, medium pressure
steam or drying (e.g., crops) that place high value on the associated heat)

Regions that place high value on pure water (exhaust from ammonia MegaNinja is water and nitrogen. Pure water can be
captured at the cost of condensing the water.) Combustion of 1.75 MM gallons of ammonia generates about 1.7 MM gallons of
water.

They will be very attractive to sites willing and able to pay large premiums for locally controlled, uninterruptible power
(financial/business centers, server farms, hospitals.

military/government installations, large research facilities/research universities)

Regions that are imposing a cost on CO2 emissions (e.g., California) can reduce or eliminate those costs.
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This is potentially a very positive development for utilities, local/regional government (e.g., PJM and RPM) for:

Predictable standby reserve available on 5 minute call-up (with right incentives and minimally sophisticated ‘smart grid’ controls)
(much cheaper and much more flexible than spinning reserve CCGT that is only used as gas prices are rising above $40/mmbtu)

Distributed and potentially very substantial regional fuel reserve for mid-winter, late summer, regional security (much cheaper
(pseudo-‘free’) than natural gas storage and much more flexible)

This is potentially a very positive development for property managers and energy customers

More predictable/controllable pricing through contract and/or arbitrage at regional or urban level with ammonia producers/gas
monetizers. And significantly lower than market prices over the last five years.

Lots of headroom for optimization for profits. Project design for medium pressure steam, space heating, hot water heating, drying
operations (e.g., crops), heat driven chillers (air conditioning, refrigeration for food distribution and retailing)

This is potentially a very positive development for urban governments
Distributed, secure energy storage for reliable power within the city
Very clean power generation (zero carbon as well as zero traditional pollutants)

Initial infrastructure for ammonia fuel for buses, delivery trucks, taxis, govt vehicles etc for superclean transport in cities (much
cheaper than CNG or electric, much, much cheaper than hydrogen)
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How Does This All Get Started?

— Market demonstration at 1-10 MW scale (diesel gen, refit, new optimized, blends)
— Tech/market demo at 25-50 MW scale (repowering coal/fuel oil boilers)

— Engage ammonia producers/investors

New build guaranteed offtake (some fraction of production)

Eventually, utility plants with guaranteed returns for fuel take or pay (with perhaps shared profits for joint
sales into market after satisfaction of energy market contractual requirements)

Market, regulatory, technology demo support from self selected producers
Plant technology/engineering firms (KBR, Uhde, MHI, etc) that will benefit from increased building

— Low cost, high CO2 value areas for low carbon, low cost fuels

— Accelerate demo/commercialization of power to NH3 technologies

Compile list of potentially interested investors, green funding, etc for incipient technologies for
investments in the range of $5-$20 MM for FEED, critical demoes or initial deployment in regions for low
cost “stranded” power (i.e., Canada, Iceland)

Competition for proposals for ammonia from power, perhaps with funding from such entities (NH3Fual
Association as clearinghouse??)

 Future Search with engaged stakeholders sponsored by CATF
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