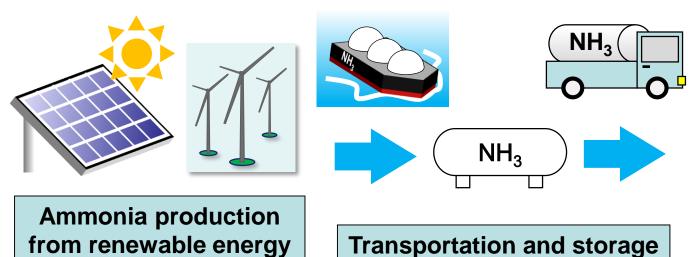
2015 NH₃ Fuel Conference, Argonne National Laboratory, IL, USA September 22, 2015

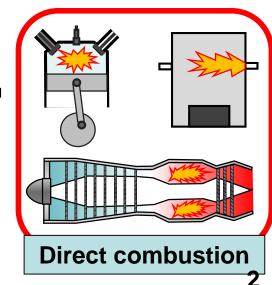
Enhancement of Reaction and Stability of Ammonia Flames using Hydrogen Addition and Swirling Flows

<u>Akihiro Hayakawa,</u> Akinori Ichikawa, Yoshiyuki Arakawa, Taku Kudo and Hideaki Kobayashi

Institute of Fluid Science, Tohoku University, Japan

Outline

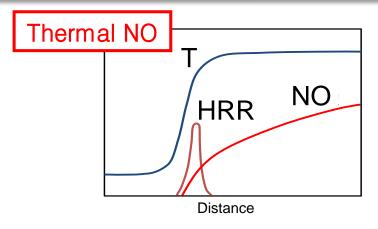

- 1. Background and objectives
- Reaction enhancement by the hydrogen addition
 - Experimental evaluation of laminar burning velocity of ammonia/hydrogen/air flames at the high pressures
- 3. Stabilization enhancement by a swirling flow
 - Stabilization limit of ammonia/air premixed flame on a gas turbine-like combustor
- 4. Conclusions



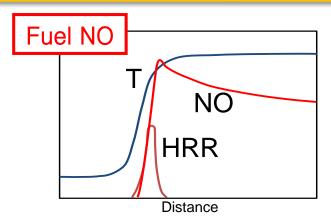
Background

- Ammonia(NH₃) as a hydrogen-energy carrier
 - New manufacturing process using alternative fuels and high efficiency conversion to hydrogen
- Features of ammonia
 - High hydrogen capability (hydrogen mass density: approx. 18 wt%)
 - Storage and transportation are easy because ammonia liquidizes approx.
 at 8.5 atm in the room temperature.
 - Infrastructures for ammonia manufacturing and distribution have already been established.

Application of NH₃ as a fuel

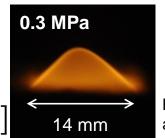


✓ Ammonia combustion = Carbon-free combustion


$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$

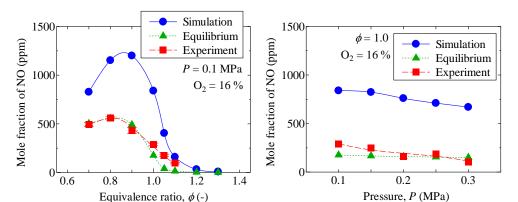
Issues of the ammonia combustion

- Improvement of lower combustion intensity (Lower burning velocity, narrower flammable range etc.).
- Large amount of NO_x should be formed because NH₃ includes N atom.

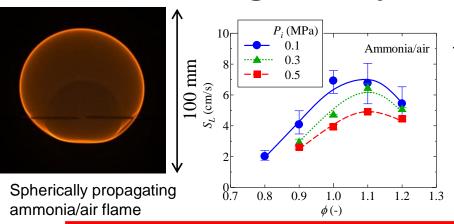


Structure of NH₃ flame

Fundamental characteristics of ammonia flames should be clarified.



Recent studies

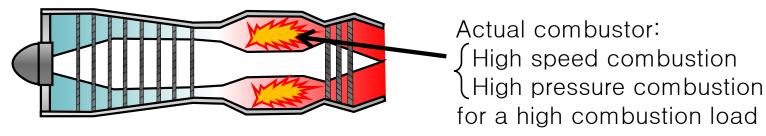


✓ NO formation/reduction mechanism[1]

✓ NO decreases with the increase in equivalence ratio and mixture pressure.

✓ Laminar burning velocity of ammonia/air flames[2]

Maximum value of laminar burning velocity of ammonia/air flame is about 7 cm/s, and is about 1/5 of methane/air flame.


Fundamental flame characteristics is being studied.

- [1] A. Hayakawa et al., Mechanical Engineering Journal, Vol. 2, No. 14-00402. 2015.
- [2] A. Hayakawa et al., Fuel, Vol. 159, pp. 98-106, 2015.

Flame enhancement

Enhancement of the ammonia flame:

Reaction enhancement by the hydrogen addition

Higher combustion intensity, production from ammonia and carbon free

- ✓ Frigo and Gentili[3]: Hydrogen added ammonia is adopted to SI engine.
- ✓ Laminar burning velocities of ammonia/hydrogen/air flame were clarified by Lee et al.[4], Kumar et al.[5] and Li et al.[6].
 - All experiments were performed at the atmospheric pressure.

Stabilization enhancement by a swirling flow

Swirling flow is adopted in an actual gas turbine combustor to increase the flame stability. There is no study of ammonia flame on a swirl combustor.

[3]S. Frigo and Gentili, Int. J. of Hydrogen Energy 38 2013: 1607-1615, [4] Lee et al. Int. J. Hydrogen energy 35 2010; 11332-11341, [5] Kumar and Meyer. Fuel 108 2013;166-176, [6] Li et al. Int. J. Energy Research 38 2014; 214-1223.

Objective of this study

Objective

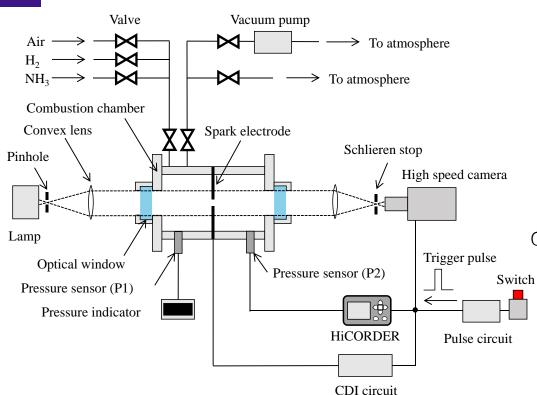
To achieve flame enhancement of ammonia flame:

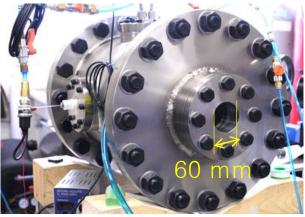
- Reaction enhancement of ammonia by the hydrogen addition
- Stability enhancement by a swirling flow.
- Experimental investigation of laminar burning velocity of ammonia/hydrogen/air premixed flames using a constant volume combustion chamber up to 0.5 MPa.
- Flame stabilization limit of ammonia/air premixed flame on a gas turbine like swirl combustor.

Topic 1

Reaction enhancement by hydrogen addition

- Experimental evaluation of laminar burning velocity and Markstein length
- Comparison between experimental and numerical results


Detail:


A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo and H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, *International Journal of Hydrogen Energy*, Vol. 40, pp. 9570-9578, 2015

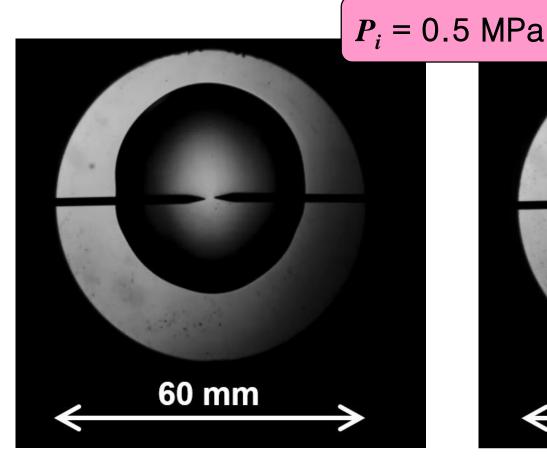
Experimental setup

Constant volume combustion chamber

Hydrogen ratio in fuel $\frac{[H_2]}{x_{H2}} = \frac{[H_2] + [NH_3]}{[H_2]}$

[X]: Mole fraction of X

Experimental setup


- Volume: approx. 23 L
- Observation windows: φ 60 mm
- Diameter of the electrodes: 1.5 mm
- Distance of the electrodes: 2 mm
- Electrostatic energy: 0.28 2.8 J

- Mixture: NH₃/H₂/air
- Initial temperature: 298 K
- Initial mixture pressure, P_i : 0.1, 0.3, 0.5 MPa
- Equivalence ratio, ϕ : 1.0 (stoichiometry)
- x_{H2} : 0 1.0

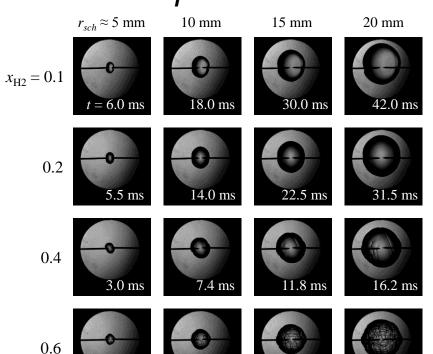
High-speed schlieren images

60 mm

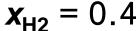
$$x_{\rm H2} = 0.2$$
 5000 fps

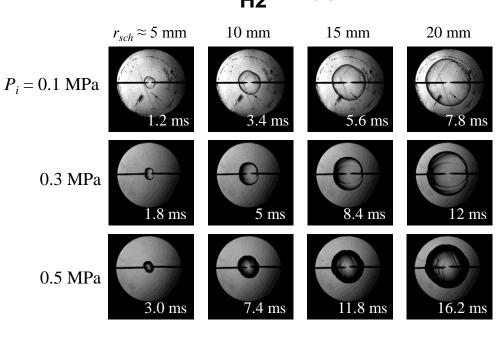
$$x_{\rm H2} = 0.6$$

10000 fps



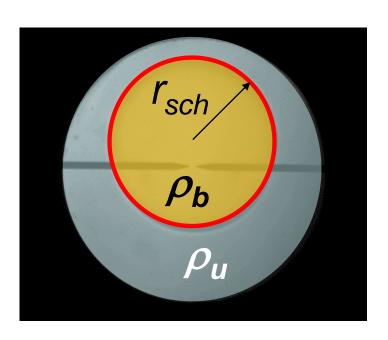
Observation of flames


Effects of hydrogen addition


$P_i = 0.5 \text{ MPa}$

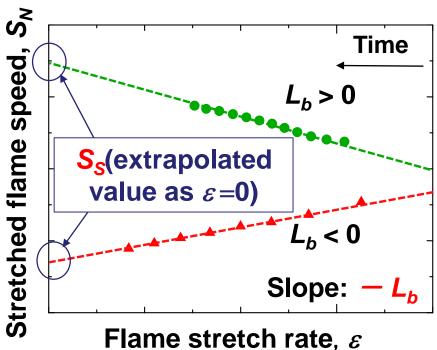
- ✓ Flame propagation speed increases with x_{H2}.
- ✓ Flame front wrinkling can be observed at high x_{H_2} .

Effects of pressure



✓ Flame propagation speed decreases with P_i.

Analysis of spherical flames



$$S_N = \frac{\mathrm{d}r_{sch}}{\mathrm{d}t}.....(1)$$

$$\varepsilon = \frac{1}{A} \cdot \frac{dA}{dt} = \frac{2}{r_{sch}} \cdot \frac{dr_{sch}}{dt} \dots (2)$$

$$S_S - S_N = L_b \cdot \varepsilon \dots (3)$$

$$S_L = \frac{\rho_b}{\rho_u} \cdot S_S \dots (4)$$

 S_N : Stretched flame speed

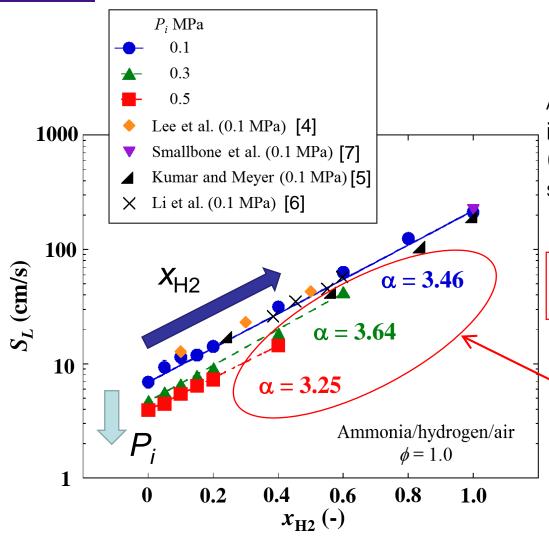
 ρ_u : Unburned mixture density

 ρ_b : Burned gas density

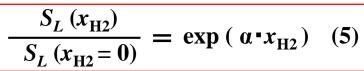
 r_{sch} : Flame radius, t: time, ε : Flame stretch rate

A: Flame front area (= $4\pi r_{sch}^2$)

 S_s : Unstretched flame peed


 S_L : Unstretched laminar burning velocity

L_b: Burned gas Markstein length

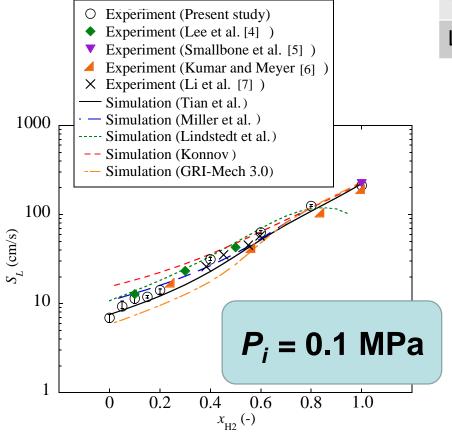

Unstretched laminar burning velocity, S_L

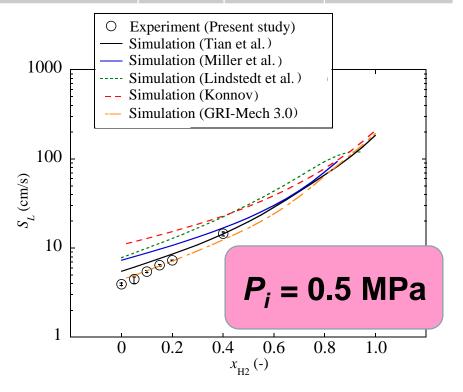
[4] Lee et al. Int. J. Hydrogen energy 35 2010;11332-11341, [5] Kumar and Meyer. Fuel 108 2013;166-176, [6] Li et al. Int. J. Energy Research 38 2014;1214-1223, [7] Smallbone et al. J. Thermal. Sci. Technol 1 2006;31-41

As hydrogen ratio increases, S_L increases linearly on semilog graph. (The vertical axis is shown as log scale.)

 α : constant

- The values of α are about 3.5 at all initial mixture pressures.
- It can be presumed that the effects of pressure on hydrogen addition is small.



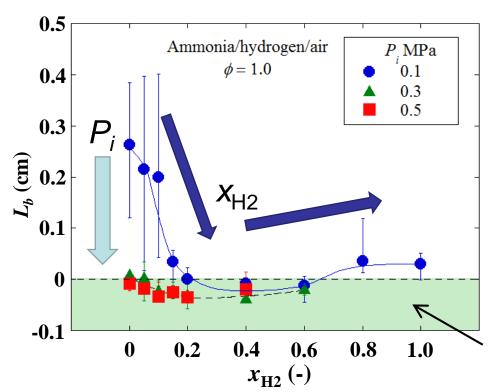

Comparison of S_i with

numerical values

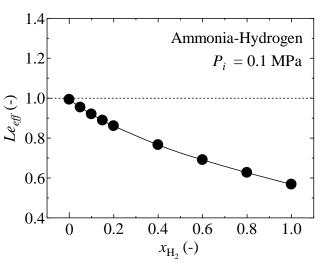
Mechanism	Year	Species	Reactions
Tian et al.	2009	84	703
Miller et al.	1983	23	98
Konnov	2009	129	1231
GRI-Mech 3.0	2000	53	325
Lindstedt et al.	1994	21	95

Further improvement of reaction mechanism is required. 13

Markstein length, L_b



Markstein length, L_b : Sensitivity of laminar burning velocity to flame stretch


 $L_b < 0$: Burning velocity increases

 $L_b > 0$: Burning velocity decreases

for positive stretched flames.

- As initial mixture pressure increases, L_b at $x_{H2} = 0$ decreases to around 0.
- L_b changed non-monotonically with the increase in hydrogen ratio.

Non-monotonic change in L_b cannot be explained from view point of effective Lewis number, Le_{eff} .

Negative L_b is good for turbulent combustion because local burning velocity is increased by flame stretch.

Conclusions

Reaction enhancement by the hydrogen addition

- Laminar burning velocity of the ammonia/hydrogen/air premixed flame exponentially increases with the increase in the hydrogen ratio.
- Laminar burning velocity decreases as the initial mixture pressure increases.
- Markstein length varies non-monotonically with the hydrogen ratio.

Stability enhancement by the swirling flow

Please refer the proceedings below:

Reference:

Y. Arakawa, A. Hayakawa, K.D.K.A. Somarathne, T. Kudo and H. Kobayashi, Flame characteristics of ammonia and methane flames in a swirl combustor, *Proceedings of 12th International Conference on Flow Dynamics (12th ICFD)*, Sendai, Japan, October 27 - 29, 2015.

This study is supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Energy carrier" (Funding agency: the Japan Science and Technology Agency (JST)).