Cross-ministerial Strategic Innovation Promotion Program (SIP)

Hydrogen Generation from Ammonia for PEM Fuel Cells

20-23 of September 2015 12th Annual NH₃ Fuel Association Conference Yoshitsugu Kojima Hiroshima University Institute for Advanced Materials Research

Contents

- 1. Energy and Environmental Issues
- 2. Properties of Ammonia
- 3. Safety of Ammonia
- 4. Production, Storage and Transportation of Ammonia
- 5. Ammonia Utilization as a Hydrogen Carrier
- 6. Summary

1. Energy and Environmental Issues

History of Industrial Revolution

Steam Engine

Coal First Industrial Revolution (18th~19th century) Oil (Natural gas) Re Second Industrial Revolution (End of the 19th century ~Early 20th century)

Renewable energy

Third Industrial Revolution (21st century?)

Fossil energy economy

12 billion ton of oil equivalent

Sustainable economy

Hydrogen carrier

Hydrogen Carriers (solid and liquid carriers)

Volumetric density

Packing ratio

Face-centered cubic structure

Hexagonal closed packed structure

Bulk density of Mg: 0.7g/cm³

Packing ratio: 74% (theoretical value)

Packing ratio: 40%

Packing ratio(relative density): 40-50% (practical value)

J. Japan Inst. Metals, 62, 893-898 (1998)

2. Properties of Ammonia

Volumetric H₂ densities of hydrogen carriers

Heat of formation for NH_3 : about 10% of heat of combustion for H_2

Ammonia concentration 100%(deleterious substance)→Hydrogen carrier

4. Production, Storage and Transportation of Ammonia

Ammonia production process(Haber-Bosch process)

Storage and Transportion of NH₃

World production: 1.8 hundred million ton /year(2013)

Storage 15,000 tons level

http://www.fao.org/3/a-i4324e.pdf

World production capacity: 2.1 hundred million ton /year (2013)

Transport 30,000 tons level by tanker ship

MC331 11500gal, 300psi

900 fuel cell vehicles

Transportation 26tonns by trailer (H₂: 4.6tonns)

5. Ammonia Utilization as a Hydrogen Carrier

Fuel cell vehicle vs. hybrid vehicle

MIRAI Price: around \$60,000

H₂ price:1000-1100yen/kg (\$9/kg) Fuel consumption rate: 135km/kg Fuel price:7.4-8.1yen/km(¢6/km)

Lexus GS 450h Price: around \$60,000

Gasoline price:130-150yen/L (\$1.1/L) Fuel consumption rate:18.2km/L Fuel price:7.1-8.2yen/km(¢6/km)

Scenario of Fuel Cell Commercialization Conference of Japan(FCCJ) 2 millions of FCV and construction of around 1,000 hydrogen stations in 2025

Volumetric H₂ density of ammonia: maximum, Enthalpy difference for H₂ desorption: small \rightarrow Hydrogen station using NH₃: key issue

Specification of hydrogen fuel for FCV (ISO 14687-2:2012)

Species	Concentration
Purity of H ₂	99.97%
Total hydrocarbons(C1)	2ppm
Water(H_2O)	5ppm
Oxygen(O ₂)	5ppm
N ₂ , Ar	100ppm
Не	300ppm
Carbon Dioxide (CO ₂)	2ppm
Carbon Monoxide(CO)	0.2ppm
Total sulphur compounds	0.004ppm
Formaldehyde	0.01ppm
Formic acid	0.2ppm
Ammonia	0.1ppm 🛛
Total halogenated compounds	0.05ppm

Fuel cell

Ammonia concentration below 0.1ppm

Purpose of research and development

Ammonia decomposition and high purity H_2 supply system $(NH_3 \rightarrow (1/2)N_2 + (3/2)H_2)$

NH₃ decomposition catalysts

Catalytic activity of Ru-based catalysts at 500°C

T. Fujitani, A. Takahashi, Effect of Supports on the Ammonia Decomposition Reaction by the Ru Catalyst, The Japan Institute of Energy 24th National Meeting, August 3-4, Sapporo, Japan, 2015

NH₃ absorbing materials

Plateau pressure of metal ammine chloride

 $\begin{array}{ll} \mbox{MgCl}_2 \mbox{ absorbs ammonia to form 3} \\ \mbox{kinds of ammine complexes} \\ \mbox{MgCl}_2 \mbox{ ammine complexes} \\ \mbox{MgCl}_2 \mbox{ + NH}_3 \mbox{ Mg(NH}_3)\mbox{Cl}_2 \\ \mbox{Mg(NH}_3)\mbox{Cl}_2 \mbox{ + NH}_3 \mbox{ Mg(NH}_3)\mbox{2l}_2 \\ \mbox{Mg(NH}_3)\mbox{Cl}_2 \mbox{ + NH}_3 \mbox{ Mg(NH}_3)\mbox{2l}_2 \\ \mbox{Mg(NH}_3)\mbox{2l}_2 \mbox{ + 4NH}_3 \mbox{ Mg(NH}_3)\mbox{2l}_2 \\ \mbox{Mg(NH}_3)\mbox{2l}_2 \mbox{ + 4NH}_3 \mbox{ Mg(NH}_3)\mbox{6l}_2 \\ \mbox{ S. Lysgaard et al., Int. J. Hydrogen Energy, 37, 18927-18936 (2012)} \end{array}$

Mg(NH₃)₆Cl₂ is formed at room temperature (PCI, XRD, TG-MS)

After activation of MgCl₂, Mg(NH₃)Cl₂ is formed at high temperature of 230-300°C (PCI, XRD, TG-MS)

van't Hoff plot: accurate evaluation of ΔH⁰ and ΔS⁰ for monoammine complex

T. Aoki et al., The Iron and Steel Institute of Japan and The Japan Institute of Metals and Materials, Chugoku Shikoku Branch National Meeting, August 19-20, Hiroshima, Japan 2015. $MgCl_2 + NH_3 \rightarrow Mg(NH_3)Cl_2$

Mono-ammine complex of MgCl₂ Revised standard enthalpy change $-64\pm1J/moINH_3$ Revised standard entropy change $-97\pm2J/moIK$

Standard enthalpy change -87kJ/molNH₃ Standard entropy change -135J/molK van't Hoff plot for mono-ammine complex of MgCl₂

 $NH_3:1000ppm \rightarrow NH_3:0.5ppm(0.1MPa)$

Ammonium Hydrogen Sulfate $NH_4HSO_4 + NH_3 \leftrightarrow (NH_4)_2SO_4$

Standard enthalpy change -108kJ/molNH₃ Standard entropy change -193J/molK (entropy of NH₃: 193J/molK)

CRC Handbook of Chemistry and Physics, 92nd Edition

A small amount of NH₃ determination method Break through testing apparatus (FTIR - Gas Cell) Optical path length: 1.5m

0.1-1000ppm(0.1MPa)

Hydrogen/ ammonia mixed gas around 0.1MPa(NH₃:1000ppm)

T. Kimura et al., The Iron and Steel Institute of Japan and The Japan Institute of Metals and Materials, Chugoku Shikoku Branch National Meeting, August 19-20, Hiroshima, Japan 2015.

Breakthrough curve for ammonia absorption from H_2/NH_3 in ammonium hydrogen sulfate by FTIR - Gas Cell

Conceptive picture of H₂ station using NH₃

Air contains 80% nitrogen.

6. Summary

- Ammonia is a hydrogen carrier having maximum volumetric H₂ density of about 11kgH₂/100L.
- 2. Heat of formation for NH₃ is about 10% of heat of combustion for H₂.
- 3. Ammonia can transport 4.6 tons of hydrogen by trailer, which corresponds to 900 fuel cell vehicles.
- 4. High purity hydrogen gas will be produced by Ru-based catalyst, ammonia absorption materials.

Acknowledgement

This work was partially supported by Council for Science, Technology and Innovation(CSTI), Crossministerial Strategic Innovation Promotion Program (SIP), "energy carrier"(funding agency : JST)

National Institute of Advanced Industrial Science and Technology

 ΔIST

8th World Hydrogen Technologies Convention June 2(Sunday)-7(Friday), Tokyo International Forum

All Japan governmental, industrial and academic sectors will provide exhibition and forum for the latest hydrogen technology.

Chair Y. Kojima, Co-Chair H. Takagi

Thank you for your attention.

Hosted by WHTC 2019 Organizing Committee Co-organized with the Hydrogen Energy Systems Society of Japan (HESS)

Ess

Promoted by IAHE-International Association of Hydrogen Energy

