NO$_x$ emission analysis and flame stabilization of ammonia-hydrogen-air premixed flames

Hadi Nozari
Koç University İstanbul, Turkey

Arif Karabeyoğlu
SPG Inc, San Mateo CA
Koç University İstanbul, Turkey
Work Split

SPG Inc, San Mateo
- Power generation system development
- Large scale testing

KOC University, Istanbul
- Fundamental aspects of NH3 cracking and combustion
- Small scale testing
Challenges with NH3 combustion

- Slow kinetics (low flame speed)
- NH3, a source of fuel NOx in flames

Standard Temperature and Pressure
Air as oxidizer

A simplified reaction mechanism

Previous Study

Chemical Kinetics Study

- Flame Speed
 - Sensitivity Analysis
 - Effect of %NH3
 - Effect of φ
 - Effect of inlet T

- Ignition Delay Time
 - Effect of %NH3
 - Effect of φ
 - Effect of inlet T

- NOx Emission
 - NOx Sensitivity Analysis
 - Effect of %NH3
 - Effect of φ
 - Effect of inlet T

Goal
• 2 reduced mechanisms for steady state conditions of engine
 • NOx predictions
 • Flame speed

Reference: Konnov mechanism

Very good agreement with the full mechanism and experimental data
Previous Study

Comparison with the experimental data

![Graph showing the comparison between theoretical and experimental flame speeds.](chart)

- Full Konnov
- Red. Mech.1
- Red. Mech.2
- Red. by Duynslaegher et al.
- Exp. Van Wonterghem et al.
- Exp. Duynslaegher et al.
Quantitative comparison with **experimental data** (% discrepancy)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2</td>
<td>0.4</td>
<td>0.8</td>
<td>10.3</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.6</td>
<td>1.3</td>
<td>11.2</td>
</tr>
<tr>
<td>10</td>
<td>3.6</td>
<td>2.9</td>
<td>3.5</td>
<td>13.1</td>
</tr>
<tr>
<td>15</td>
<td>4.7</td>
<td>3.8</td>
<td>4.8</td>
<td>13.8</td>
</tr>
<tr>
<td>20</td>
<td>7.1</td>
<td>6.3</td>
<td>7.1</td>
<td>15.6</td>
</tr>
<tr>
<td>25</td>
<td>11.3</td>
<td>10.0</td>
<td>10.7</td>
<td>19.2</td>
</tr>
<tr>
<td>30</td>
<td>15.1</td>
<td>14.7</td>
<td>15.2</td>
<td>22.8</td>
</tr>
<tr>
<td>35</td>
<td>1.4</td>
<td>1.1</td>
<td>1.9</td>
<td>7.9</td>
</tr>
<tr>
<td>40</td>
<td>5.9</td>
<td>6.0</td>
<td>4.5</td>
<td>1.4</td>
</tr>
<tr>
<td>45</td>
<td>9.5</td>
<td>9.1</td>
<td>10.5</td>
<td>12.6</td>
</tr>
<tr>
<td>50</td>
<td>3.8</td>
<td>3.6</td>
<td>5.8</td>
<td>4.7</td>
</tr>
<tr>
<td>55</td>
<td>1.9</td>
<td>1.2</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>60</td>
<td>12.1</td>
<td>14.0</td>
<td>15.5</td>
<td>12.8</td>
</tr>
<tr>
<td>61.7</td>
<td>3.9</td>
<td>5.6</td>
<td>7.8</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Previous Study

Perfomance Chart

Chemical Kinetics Study

Reduced Mech.

Ammonia - O2 - N2
Stoichiometric
STP condition

Normalized CPU time

Average deviation from experimental data (%)

Full Konnov Mech.
Red. Mech.1
Red. Mech.2
Duynslaegher et al.
RESULTS

NOx Formation

Effect of equivalence ratio variation

- Increasing / Decreasing trend

Two opposite effects:

1) Increase in thermal NOx by increase in adiabatic flame T
2) Decreasing fuel NOx by decreasing O/F ratio

\[NH_i + OX \rightarrow NO + H_iX \]

OX: Oxygenated species

Noticeable reduction in NO\textsubscript{x} emission under the rich conditions

\[P=17 \text{ bar}, T=673 \text{ K} \]
Combustion Chamber
Experimental Study Scope

- NOx vs. Equivalence Ratio vs. %NH3 vs. Flame Holding Method
- T vs. Equivalence Ratio vs. %NH3
- Flame Stability vs. Flame Holding Methods
 - Blow-Off & Flashback

Methods:
- Dump Combustor
- Bluff Body
- Disc
- Porous Block

Goal:
- Chem. Kin.
- Num. Sim.
- Exp. Std.
Premixed NH3-H2-Air Flame

ϕ=1.2, 40% NH3 - 60% H2

ϕ=1.2, 60% NH3 - 40% H2

ϕ=1, 40% NH3 - 60% H2
Thank You

akarabeyoglu@ku.edu.tr
hnozari@ku.edu.tr
Previously Discussed

Combustion characteristics of ammonia as a renewable energy source and development of reduced chemical mechanisms

Hadi Nozari
Koç University, Istanbul, Turkey

Arif Karabeyoglu
Koç University, Istanbul, Turkey
Space Propulsion Group Inc., Palo Alto CA, USA

\(\phi = 0.5 \)
P=17 atm, \(\phi = 0.5 \)

\[
\begin{align*}
\text{NH}_3 + \text{OH} &= \text{NH}_2 + \text{H}_2 \text{O} \\
\text{HNO} + \text{NH}_2 &= \text{NH}_3 + \text{NO} \\
\text{NH}_3 + \text{O} &= \text{NH}_2 + \text{OH} \\
\text{NH}_3 + \text{NH}_2 &= 2\text{NH}_2 \\
\text{N}_2\text{H}_4 + \text{OH} &= \text{NH}_3 + \text{H}_2 \text{O} \\
\text{NH}_3 + \text{M} &= \text{NH}_2 + \text{H} + \text{M} \\
\text{H}_2\text{NO} + \text{NH}_2 &= \text{HNO} + \text{NH}_3 \\
\text{HNOH} + \text{NH}_2 &= \text{HNO} + \text{NH}_3 \\
\text{NH}_3 + \text{NH}_2 &= \text{N}_2\text{H}_3 + \text{H}_2 \\
\text{NH}_2 + \text{NH} &= \text{NH}_3 + \text{N} \\
\text{N}_2\text{H}_2 + \text{NH}_2 &= \text{NH}_3 + \text{NH}_3 + \text{N} \\
\text{HONO} + \text{NH}_2 &= \text{NO} + \text{NH}_3 \\
\text{N}_2\text{H}_4 + \text{NH}_2 &= \text{N}_2\text{H}_3 + \text{NH}_3 \\
\text{NH}_3 + \text{H} &= \text{NH}_2 + \text{H}_2 \\
\text{N}_2\text{H}_3 + \text{NH}_2 &= \text{NH}_3 + \text{N}_2\text{H}_2
\end{align*}
\]
RESULTS

NOx Formation

Effect of H2 addition to the mixture

- **Constant Inlet T (400°C)**
 - Thermal NOx and Fuel NOx; the only players?

- **Constant Flame T (1730 K)**
 - General expectation: decrease in Total NOx (decreasing fuel bond N)
 - Total NOx still increasing (despite const. thermal NOx)!
 - Effect of H and HNO accumulation → Increasing ROP of some key reactions
 - $\text{NO}_2 + \text{H} \leftrightarrow \text{NO} + \text{OH}$
 - $\text{HNO} + \text{H} \leftrightarrow \text{NO} + \text{H}_2$
 - $\text{HNO} + \text{OH} \leftrightarrow \text{NO} + \text{H}_2\text{O}$

- **Decoupling thermal NOx from total NOx**

\[
\text{Thermal NOx Share} = \frac{\text{NOx Level @ Const. Inlet T of 400°C} - \text{NOx Level @ Const. Flame T of 1730 K}}{\text{NOx Level @ Const.Inlet T of 400°C}} \times 100
\]

- Thermal NOx share increase with increasing H2 % (Flame T)

$\phi = 0.5$
RESULTS

Reduced Mechanism

NOx Emission Prediction

\(P=17 \text{ bar}, T=673 \text{ K} \)
RESULTS

Importance of OH radical in flame speed

ϕ = 0.5, P = 17 bar, T = 673 K
RESULTS

Autoignition

Importance of radicals in autoignition and ignition initiation

φ=0.5, T=1300 K, P=17 bar

Accumulation of influential radicals close to the ignition time
Outline

- Why ammonia?
- Challenges
- Chemical Kinetics Results
- Ongoing Experimental Research
THE ENERGY PROBLEM

- Extensive use of fossil fuels
- Major problems: Human health and welfare, environmental issues
- A hot concern: Replacing current energy carriers
- The Intergovernmental Panel on Climate Change (IPCC) report: Atmospheric CO2 levels rose almost twice as fast in the first decade of this century

«THE WORLD MUST RAPIDLY MOVE AWAY FROM CARBON-INTENSIVE FUELS»
NH₃ as a Green Energy Source
Review

- Why ammonia?