

Facilitator: Bill David

ISIS Facility, Rutherford Appleton Laboratory, UK & Inorganic Chemistry Laboratory, University of Oxford, UK

ENERGY PRODUCTION

Hydroelectric

Marine

Geothermal

UNIVERSITY OF

Solar

Wind

Nuclear

Biomass

Gas WATER

NH₃ | the quintessential non-carbon hydrocarbon

NH₃ Fuel Use : Agenda

1:00 pm	Cracking Ammonia (UK)
1:30 pm	Research and Development of Ammonia-fueled SOFC Systems (Japan)
1:55 pm	Power Generation and Flame Visualization of Micro Gas Turbine Firing Ammonia or Ammonia-Methane Mixture (Japan)
2:20 pm	NO _x Emission Analysis and Flame Stabilization of Ammonia-Hydrogen- Air Premixed Flames (Turkey & USA)
2:45 pm	15 minute break and Refreshments Nutrition Hub (Lobby)
3:00 pm	Combustion Characteristics of Ammonia / Air Flames for a Model Swirlburner and an Actual Gas Turbine Combustor (Japan)
3:25 pm	The Raphael Schmuecker Memorial Solar Hydrogen System – an update (USA)
3:50 pm	Development of Ammonia / Natural Gas Dual Fuel Gas Turbine Combustor (Japan)
4:15 pm	Carbon Free Liquid Fuel for Today's (and Tomorrow's) Piston and Turbine Generators (USA)
4:40 pm	Adjourn for the day

Cracking Ammonia

<u>Bill David^{1,2}</u>, Josh Makepeace², Hazel Hunter¹, Tom Wood¹

¹ISIS Facility, Rutherford Appleton Laboratory, UK & ²Inorganic Chemistry Laboratory, University of Oxford, UK

2016 NH₃ Fuel Conference | Luskin Conference Center, UCLA | 18-21 Sept 2016

cracking

noun [U] • / kræk·ɪŋ/

chemistry a process in which large molecules of a hydrocarbon are broken down into smaller molecules

cracking

adjective [U] · / kræk·Iŋ/

BRITISH informal excellent

"he is in cracking form to win this race"

"Cracking good cheese, Gromit!"

Katsuhiko Hirose (Toyota) Head, Fuel cell development

Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015.

Katsuhiko Hirose

"Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research" **Faraday Discussions**, 2011, **151**, 11-18 **DOI:** 10.1039/C1FD00099C

... storing hydrogen is a challenge

WIF David,

"Effective hydrogen storage: a strategic chemistry challenge" Faraday Discussions, 2011, **151**, 399–414 DOI: 10.1039/c1fd00105a

Katsuhiko Hirose (Toyota) Head, Fuel cell development

Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015.

Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behaviour in materials, the only engineering phase technology which will be available for 2015 is high pressure storage.

Thus industry has decided to implement the high pressure tank storage system.

Katsuhiko Hirose

"Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research" **Faraday Discussions**, 2011, **151**, 11-18 **DOI:** 10.1039/C1FD00099C

... storing hydrogen is a challenge

WIFDavid,

"Effective hydrogen storage: a strategic chemistry challenge" **Faraday Discussions,** 2011, **151**, 399–414 **DOI**: 10.1039/c1fd00105a

Ammonia cracking: NaNH₂ catalyst performance

WIF David, JW Makepeace et al. J. Am. Chem. Soc. 2014 136(38) 13082-13085

PEM fuel cell demonstrator

HMA Hunter et al. Journal of Power Sources 329 (2016) 138-147 | dx.doi.org/10.1016/j.jpowsour.2016.08.004

PEM fuel cell demonstrator

HMA Hunter et al. Journal of Power Sources 329 (2016) 138-147 | dx.doi.org/10.1016/j.jpowsour.2016.08.004

PEM fuel cell demonstrator: purification

 $MgCl_{2(s)} + 6NH_{3(g)} \rightarrow Mg(NH_3)_6Cl_{2(s)}$

Fig. 5. Determination of ammonia breakthrough from a single MgCl₂-filled column, where the reactor contained 1.0 g Li₂NH and was operated at 590 °C under a 275 sccm NH₃ inlet flow. Plots show mass spectrometer signals for (a) hydrogen and nitrogen and (b) ammonia and water (close-up), after switching from argon to NH₃ gas at 33 min.

PEM fuel cell demonstrator: purification

Ammonia cracking: NaNH₂ catalyst performance

Ammonia cracking: catalyst performance summary

Next steps: completely solid catalyst, improved decomposition kinetics, promotion...

STATUS & PROSPECTS

Catalyst development

- Solid catalyst
- Stable imide | unstable imide system

Catalytic reactor redesign

- Flow-through design
- Catalyst support

Purification

- materials improvement
- absorption reactor development

Fuel cell developments

- Anionic membrane alkaline fuel cells
- Purge strategies for $3H_2|N_2$ mixtures

Vision

- 5-10kW nett | remote telecommunications
- Partial conversion: additional combustion option
- Safe ammonia systems

Fuel Cell Demonstrator

ISIS
ISIS / Oxford
ISIS
STFC Innovations
ISIS

Catalysts

Josh Makepeace	ISIS / Oxford
Martin Jones	ISIS
Hazel Hunter	ISIS
Tom Wood	ISIS

Ammonia + Anionic membrane AFCs

Tom Wood	ISIS
Josh Makepeace	ISIS / Oxford
Martin Jones	ISIS
Dan Brett	UCL
Paul Shearing	UCL
John Varcoe	Surrey

