Piloting a Combined Heat and Power/Distributed Generation System Powered by Anhydrous Ammonia

> Peter Sinsheimer, Ph.D., MPH Executive Director, UCLA Sustainable Technology & Policy Program

NH₃ Fuel Association Conference

Luskin Conference Center, UCLA

September 18-21, 2016

Diffusion Analysis: Barriers Categories and Barriers

Barrier		Barrier	
Category	Barriers	Category	Barriers
Technical	Technically not viable/unreliable	Market	Highly controlled energy sector
	Lack of standard and codes and certification	Failure/	Lack of information and awareness
	Lack of skilled personnel/training facilities	Imperfection	Restricted access to technology
	Lack of O&M facilities		Lack of competition
	Lack of entrepreneurs		High transaction costs
	System constraints		Missing market infrastructure
Economic and	Economically not viable	1	High investment requirements
Financial	High discount rates	Institutional	Lack of institutions/mechanisms to disseminate information
	High payback period		Lack of a legal/regulatory framework
	Market size small	1	Problems in realizing financial incentives
	High cost of capital	1	Unstable macro-economic environment
	Lack of access to capital	1	Lack of involvement of stakeholders in decision making
	Lack of access to credit to consumers		Clash of interests
	High upfront capital costs for investors		Lack of R&D culture
	Lack of financial institutions to support RETs, lack of instruments		Lack of private sector participation
Market	Favor (such as subsidies) to conventional energy	1	Lack of professional institutions
Distortions	Taxes on RETs	Social, Cultural	Lack of consumer acceptance of the product
	Nonconsideration of externalities	and Behavioral	Lack of social acceptance for some RETs
	Trade barriers	Other Barriers	Uncertain governmental policies
		1	Environmental
			High risk perception for RETs

Painuly. J.P. (UNEP Collaborating Centre on Energy and Environment) Barriers to renewable energy penetration; A framework for analysis. 2001. Renewable Energy

California Policy Context: 2015 -- Senate Bill 350

- 50% RPS by 2030
- Increase RPS resources -- solar, wind, biomass, geothermal, and others.
- Double energy efficiency savings in electricity and natural gas end uses by 2030.
- Large utilities to develop Integrated Resource Plans (IRPs) showing how to meet customers resource needs, reduce greenhouse gas emissions, and ramp up the deployment of clean energy resources.

STPP Proposal Title: "Piloting Combined Heat and Power/ Distributed Generation System Powered by Anhydrous Ammonia"

PROGRAM OPPORTUNITY NOTICE

Joint Renewable Energy and Advanced Generation, and Energy-Related Environmental Research, Development and Demonstration

PON-13-502

http://www.energy.ca.gov/contracts/index.html

State of California

California Energy Commission October 2013

Research Areas:

- A. Localized Efficient and Advanced Power and Heat Systems
- B. Combined Heat and Power Applications for Associated Gas from Oil and Gas Production Fields
- C. Reliable Power through Accelerated Demonstration and Deployment of Distributed Generation/Combined Heat and Power in Select Southern California Regions
- D. Air Quality Implications of Using Biogas to Replace Natural Gas

Specific Technical and Cost Goals Based on Sturman Industry Camless Engine 2013 CEC Study Findings

(A 25, B25, C25 3-Cyl), Mid-Loaded <mark>3-Way Catalyst</mark>								
		TQ	Weighted Power	BSNOx	BSFC	BSNMHC	BSCO	BTE
Mode	RPM	N-m	kW	g/kW-hr	g/kW-hr	g/kW-hr	g/kW-hr	%
ldle	713	0	0.00	0.000	0.0	0.000	0.000	0.0
A25	1130	406	2.40	0.000	262.4	0.004	0.089	32.8
A50	1118	823	4.82	0.011	234.9	0.000	0.043	36.6
A75	1129	1251	7.40	0.015	219.2	0.003	0.052	39.2
A100	1130	1682	15.92	0.005	207.9	0.035	0.043	41.4
B25	1482	434	6.74	0.000	260.5	0.004	0.207	33.0
B50	1478	945	14.62	0.000	232.4	0.000	0.253	37.0
B75	1479	1450	22.47	0.005	218.1	0.024	0.074	39.4
B100	1482	1928	26.93	0.005	213.6	0.000	0.084	40.3
C25	1828	292	2.79	0.015	314.3	0.000	-0.009	27.4
C50	1830	675	6.46	0.006	256.2	0.013	0.437	33.6
C75	1829	1065	10.20	0.011	227.2	800.0	0.020	37.8
C100	1828	1420	21.75	0.005	228.7	0.003	0.068	37.6
	3-Mode (Composi	te	0.006	226.8	0.010	0.105	38.13
SCAC	QMD Thre	shold		0.032		0.045	0.091	

298 kW HP, Cummins ISX, Natural Gas System, Sturman HVA, Optimized

IMPROVING EFFICIENCY OF SPARK -IGNITED, STOICHIOMETRICALLY OPERATED NATURAL GAS ENGINES

Prepared for: California Energy Commission Prepared by: Sturman Industries

> MARCH 2013 CEC-500-2013-103

Energy Research and Development Division FINAL PROJECT REPORT

Specific Technical and Cost Goals

	CHP-System	
Component	Generation	Grid Power
Electric engine capacity	1.00 MW	
Target electricity demand	4,568 MWh/yr	
Total efficiency of CHP system	75%	
Emissions (NOx)	<0.07 lbs/MWh	
CO ₂ reduction	1,369 tons/yr	
Installed cost of CHP System	\$2,500,000	
Self-Generation Incentive Program Credit	\$490,000	
Capital cost recovery	\$179,028/yr	
Maintenance (including inspections, overhaul)	\$100,040/yr	
Natural gas fuel cost (at 92.5% of demand)	\$115,359/yr	
Ammonia fuel cost (at 7.5% of demand)	\$49,612/yr	
Total cost/yr	\$444,039/yr	\$822,220/yr
Cost of energy	\$0.097/kWh	\$0.180/kWh
Cost-effectiveness savings	\$0.083/kWh	
Percent cost reduction	46%	

Project Tasks and Goals

Tasks	Goals
Design of Multi-Fuel/CHP/DG	 Develop and conduct advanced prototype testing of the Sturman engine using NH₃
System	and natural gas for performance and emissions
	 Develop design options for the multi-fuel/CHP/DG System at pilot site
System Metering Equipment	Identify metering equipment
	Install meters during System installation
Field-Based System	Optimize the Multi-Fuel/CHP/DG System
Optimization	
Data Collection for System	 Collect 6+ months on data on all System inputs and outputs
Evaluation	 Calculate total system efficiency and specific system efficiency
	Collect economic data
	Calculate total cost of power
	 Calculate the cost-effectiveness of the System compared to electricity from the grid or
	other self-generation options
Evaluation of Project Benefits	 Report the benefits resulting from this project
Technology/Knowledge	 Develop a plan to make the knowledge gained, experimental results, and lessons
Transfer Activities	learned available to the public and key decision makers
Production Readiness Plan	Determine the steps that will lead to the manufacturing of technologies

Key Partnerships

Industry Partner			
Sturman Industries			
UCLA Research Team			
Name	Affiliation	Expertise	
T.C. Tsao	School of Engineering	Camless Engine Systems	
Abdon Sepulveda	School of Engineering	System Design	
Adrienne Lavine	School of Engineering	Heat Exchange	
Yifang Zhu	School of Public Health	Engine Emissions	
Technical Advisory Committee			
Name	Organization	Title	
Paul Delaney	Southern California Edison	Emerging Technologies Program Manager	
Steve Simons	Southern California Gas Company	Senior Project Manager, Power Generation RD&D Program	
Kjell Ostensen	LADWP	Engineering Specialist II	
Rizaldo Aldas	California Energy Commission	Program Lead, Renewable and Advanced Generation R&D	
Mohsen Nazemi	SCAQMD	Engineering and Compliance Deputy Executive Officer & Permit	
		Streamline Ombudsman	
Joe Lyou	Coalition for Clean Air	CEO; SCAQMD Board member	
Michael Bowman	Sustainable Biodiesel Alliance	Founding Board Member	
John Holbrook	NH ₃ Fuel Association	Executive Director of the NH ₃ Fuel Association	

Comparison: Sturman Camless Spark Ignition vs Sturman Camless Compression Ignition

		Sturman Spark
		Ignition Engine
Category	Measure	(APT Complete)
Performance	Thermal efficiency (max)	38-41%
	Power generation (max)	Standard
	Scalability (small industry to large utility)	Yes
Emissions	Existing after-treatment (SCR or 3-way cat)	< SCAQMD thresholds
Cost	Capital cost relative to existing NG gensets	≈ or ↓
	Operating cost	\downarrow Existing
	Use existing service infrastructure	Yes
Fuel Options	Gas	Yes
	Liquid	No
	Gas and Liquid Dual Fuel Cycle	No
Fuel Markets	Potential to transition from fossil fuels to carbon-	Limited
	neutral/ carbon-negative fuels	
	Potential to drive markets for wide range of	Limited
renewable fuels		

Cylinder Pressure Change During Compression and Power Stroke: Comparison of Spark Ignition to Compression Ignition to Dual-Fuel Combustion

Key Project Challenges and Responses to Date

Challenges	Responses		
Preference by Sturman to use	Willingness to wait for APT on		
compression ignition system in pilot	emissions and performance		
SCAQMD request NH ₃ not be used	 Sturman agrees to conduct all NH₃ 		
at first commercial pilot	testing at their facility		
Initial pilot site selected no longer	CEC willingness to change		
interested in proceeding	demonstration site		
	• Willingness of utility TAC members		
	to help identify alternative sites		

Project Tear Sheet: Translating Potential Performance and Emissions Benefits of New Compression Ignition System to Technical Specifications

 Tear Sheet: way for seller to communicate with buyer about essential product specifications – kW, efficiency, emissions

STURMAN INDUSTRIES Proposed Specifications: Multi-Fuel DICE Generator Block Target Date: 4th quarter, 2016 STURMAN UCLA-CEC Pilot Program (250 kilowatts) Specification Sheet: Multi-fuel DICE Generator Block Description Generator block specs ISO 8528 Part 1, Class The Sturman Industries DICE (Digital Internal Combustion Engine) generator block Governor regulation class G1 system is a fully integrated, flexible, and scalable, electrical power generation Voltage regulation ±1% solution. Utilizing proprietary digital injection and hydraulic valve actuation Random voltage variation ±1% technology, the power generation system is able to cleanly, efficiently, and cost-Isochronous Frequency regulation effectively convert a wide range of liquid and/or gas fuels into cheap, renewable, Random frequency variation ±0.5% sustainable electrical energy. Radio frequency emissions IEC 801.2 - 801.5; MIL STD 461C, Part 9 compliance Highlights Single step load pickup Industry competitive Intermodal container class ISO 668:2013 Engine Specs 0 Clean State-of-the-art digital injector and camless valve technology enable precise Twin International biturbo N10's Decign