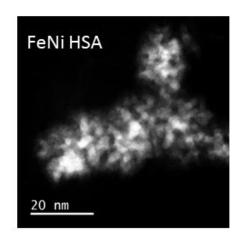
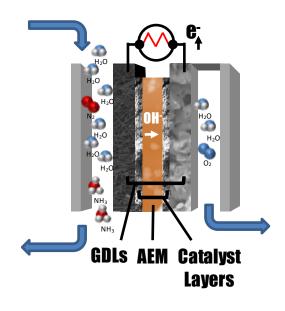
High Efficiency Low Cost Electrochemical Ammonia Production

Wayne Gellett, Steve Szymanski, Proton OnSite


NH3 Fuel Conference Los Angeles, CA September 20th 2016



Outline

Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

Proton OnSite Overview

- Core technology in PEM electrolysis
- Founded in 1996, >2500 fielded units, 20 MW capacity shipped
- Continuing to scale manufacturing capability and output to address energy markets
- MW scale electrolyzer system now available

Electrolyzer Applications:

Renewable Energy Storage

Power Plants

Heat Treating

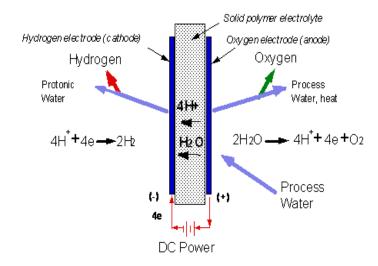
Semiconductors

Biogas

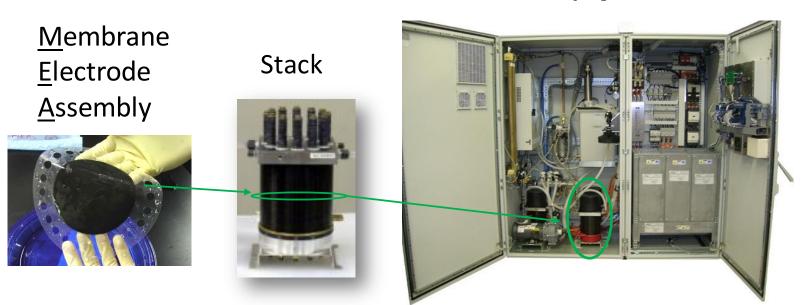
Laboratories

Government

Headquarters in Wallingford, CT



Proton Fueling Station

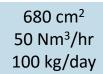

Membrane-based Electrolysis

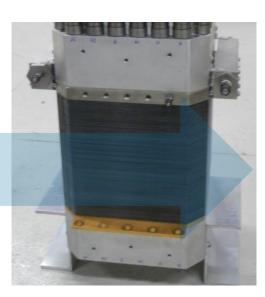
- "PEM" electrode = Proton ExchangeMembrane
- Reaction occurs across a thin MEA
- Assembled into compact stacks and systems

Hydrogen Generation Mode

Scalable Technology

From Single to Multi-Stack Systems





HOGEN® C Series

HOGEN® M Series

GC

28 cm² 0.05 Nm³/hr 0.01 kg/day

86 cm² 2 Nm³/hr 4.3 kg/day

10 Nm³/hr 21.6 kg/day

How much H₂ can we make?

7 kW

1 day

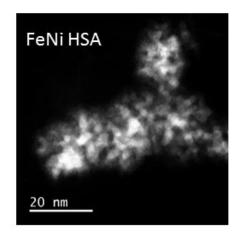
40 kW

1 day

180 kW

1 week

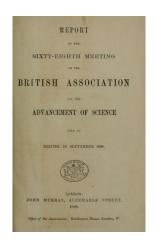
1,000 kW

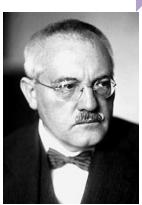

1 day

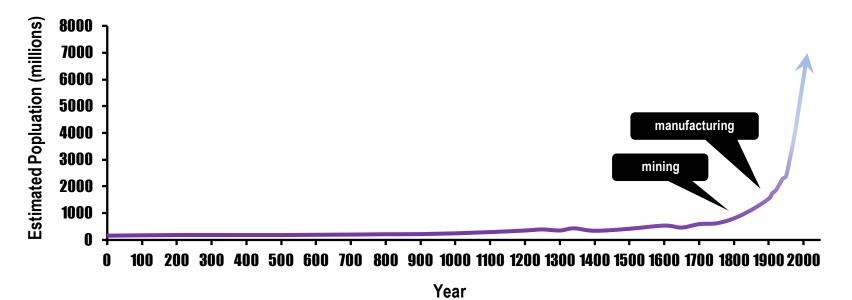
Outline

Proton OnSite Overview

Results and Future Directions


Ammonia Production History


mid 1800's: mining 1899: Crooks raises alarm 1913: Haber-Bosch

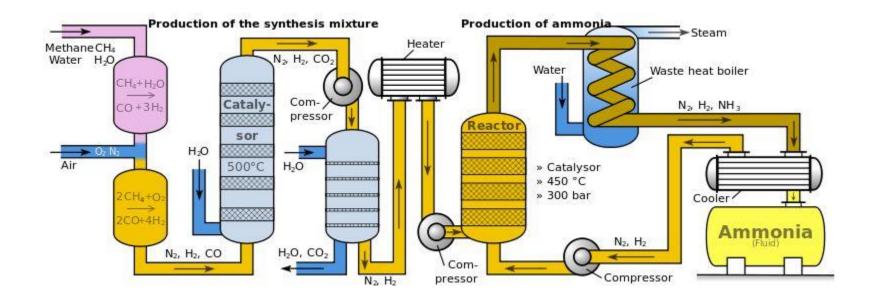


Guano mining¹

Nitrate salt mining²

Fritz Haber

Carl Bosch

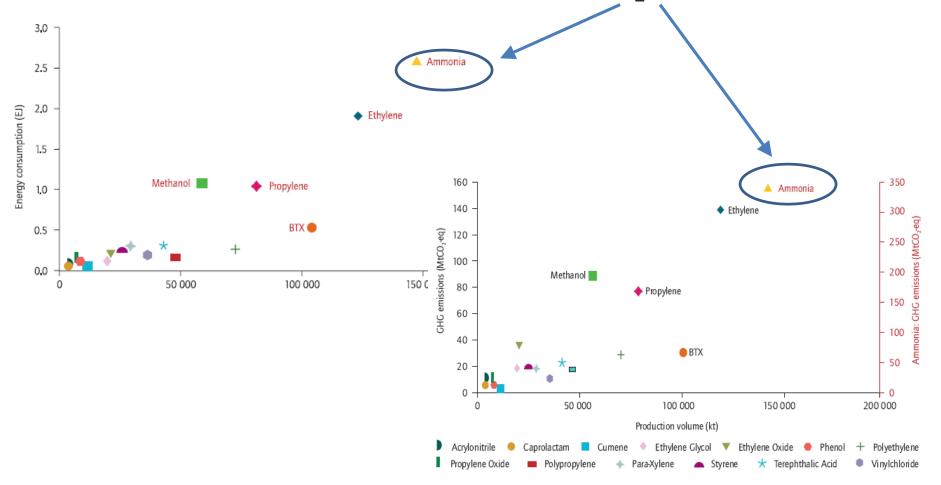


(1) History Today Volume 30 Issue 6 June 1980

(2) Dept. of the Interior US Geological Survey Bulletin 523, 1912

Haber-Bosch (HB) Process

- H₂ obtained from fossil fuels, high temp and high pressure, high capital cost
- Supports about half of the people on earth


 J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci., 1 (2008) 636-639.
- Inefficient (consumes ~1% of the worlds energy)

 Ammonia Production: Moving Towards Maximum Efficiency and Lower GHG Emissions http://www.fertilizer.org/, 2014.
- High-polluting (~3% GHG emissions)
 Feeding the Earth, International Fertilizer Industry Association, http://www.fertilizer.org/, 2009.

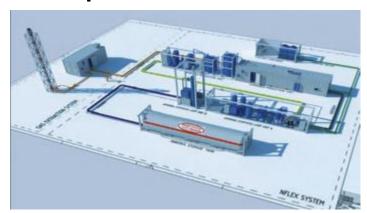
The NH₃ energy problem

18 of major chemical products use 80% of energy and produce
 75% of GHGs for the chemical industry

Ammonia is largest by far (mainly from H₂ via SMR)

Transitioning to Renewable NH₃

Current process drives centralized production



Haber Bosch plant 2000+ metric tons NH₃/day

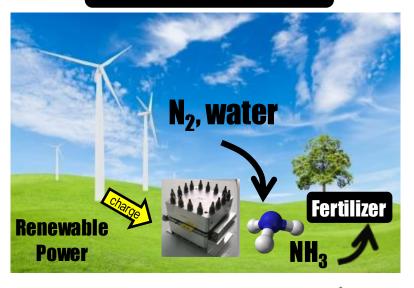
~1,000 MW H₂ equivalent Steam methane reforming for H₂

http://www.bbc.co.uk/schools/gcsebitesize/science/triple_edexcel/gases_equilibria_ammonia/ammonia/revision/1/

Options for distributed production:

http://www.protonventures.com/wp-content/uploads/2016/04/2016.4.15-Brochure-Proton-Ventures.pdf

Small Haber Bosch: 3-50 metric tons NH₃/day ~1-20 MW H₂ equivalent; renewable electrolysis



Electrochemical NH₃: g-kg NH₃/day Small scale electrolysis Proof of concept

Vision for Electrochemical Ammonia Production

Ammonia Synthesis

Industrial Uses: chemical synthesis, emissions scrubbing, refrigeration

J.N. Renner, L.F. Greenlee, A.M. Herring, K.E. Ayers, Electrochemical Synthesis of Ammonia: A Low Pressure, Low Temperature Approach, in: The Electrochemical Society Interface, Summer 2015.

- Electrically driven process for low temp/pressure/emissions
- Compatible with intermittent operation
- High regional demand for fertilizer co-located with renewables

Scalable Technology

Ammonia Production Technology Plan

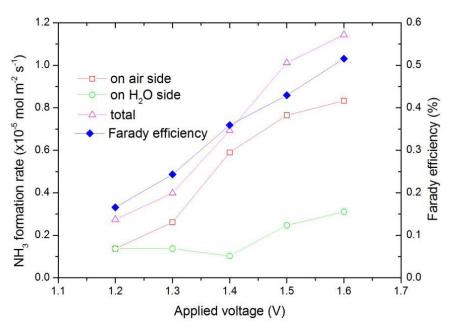
Bench Scale Size: 25 cm²

GC Size: 28-84 cm²

M Series: 400,000 cm²

PHASE I Proof-of-Concept Phase Bench Scale PHASE II Breadboard Phase Garden Capacity (100 g/year) FUTURE Product Phase Small Farm (260 acres – 12,500 kg/year)

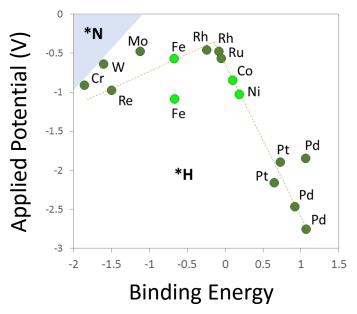
<u>Targets</u> Current Efficiency: > 1% Targets
Current Efficiency: 10%
Current Density: 10 mA/cm²


Targets
Current Efficiency: 50%

Current Density: 50 mA/cm²

- Enables networks of distributed scale and near point-of-use
- Proton developing MW-scale

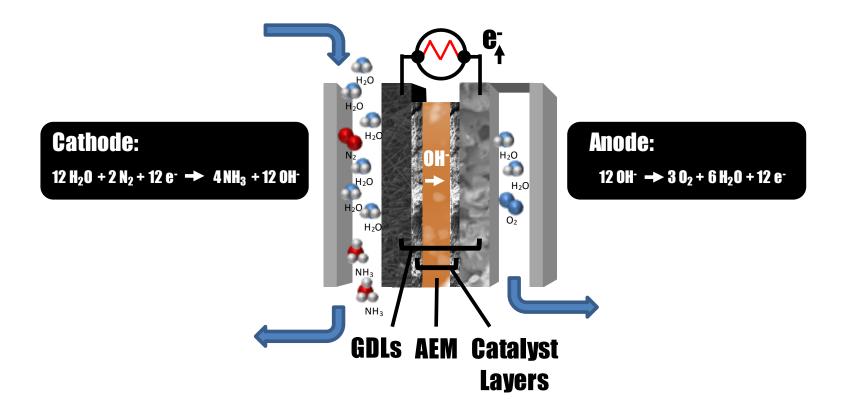
Background/Key Obstacles



R. Lan, J.T.S. Irvine, S. Tao, Scientific Reports, 3 (2013).

- Key obstacle: selective catalyst
 - low NH₃ overpotential
 - high H₂ overpotential

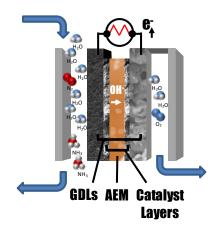
- PEM demonstrated feasibility
- At 1.5 V and below, need ~50%
 Faradaic efficiency to match HB



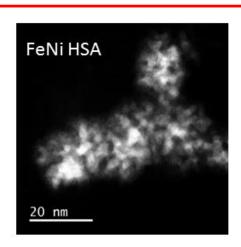
A volcano plot predicting metal performance for nitrogen electroreduction¹

E. Skúlason, et. al, Phys. Chem. Chem. Phys., 14 (2012).

AEM-based Approach



- AEM enables wider range of efficient catalysts vs. PEM
- Lower cost materials of construction in alkaline environment


Outline

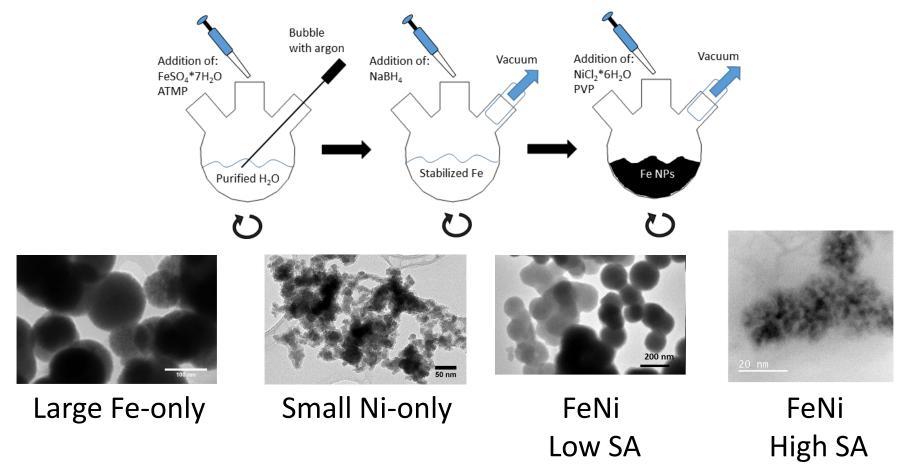
Proton OnSite Overview

Electrochemical Ammonia Synthesis

Results and Future Directions

Ammonia Generation Rig

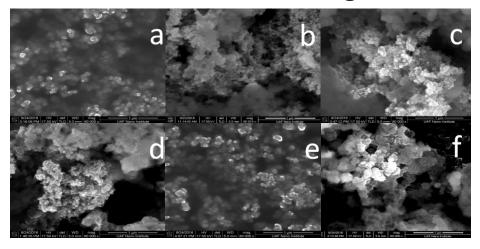
Ammonia Capture via Acid Trap and Determination via Colorimetric Assay:



Increasing ammonia concentration

- Design reviewed by senior engineers, safety qualified
- Test bed to compare multiple configurations and catalysts
- Sensitive colorimetric assay for ammonia (verified independently)

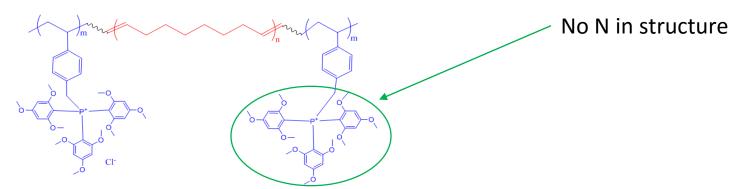
Catalyst Synthesis



- Exquisite control over nanoparticle morphology and composition for Ni and Fe compounds
- Compared to commercial Pt

Phase I Summary

- Synthesized FeNi core-shell and alloy nanocatalysts
- Demonstrated detectable ammonia generation in AEM cell

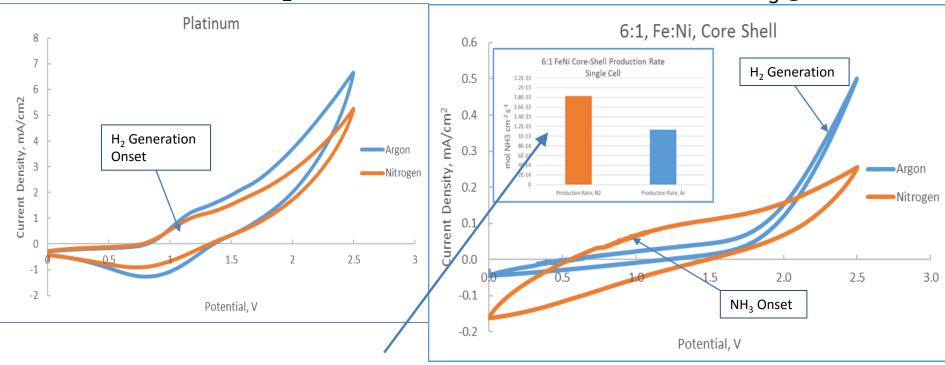

SEM images at 80,000 magnification for a) 1:1 FeNi core-shell, b) 1:1 FeNi alloy, c) 1:3 FeNi core-shell, d) 1:3 FeNi alloy, e) 3:1 FeNi core-shell, and f) 3:1 FeNi alloy.

- Improved selectivity towards ammonia generation over hydrogen evolution compared to Pt catalysts
- Catalysts containing higher concentrations of Fe to Ni have shown higher ammonia generation rates

Key Issues for Electrochemical Ammonia Generation

- Production rates are low small sources of interference can confuse results
 - Can detect ammonia from non-N2 sources
 - Degradation of N-containing materials
 - Impurities/contamination
- Need to eliminate/correct for ammonia from non-electrocatalytic sources
 - Approach 1: Elimination of N-containing side groups in membrane
 - Shift to materials containing phosphonium cations

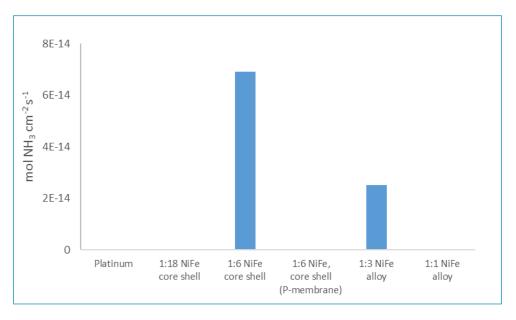
- Approach 2: Argon controls to compare to N2 results
- Similar issues noted in DOE roundtable discussion¹


¹Norskov, J. K., et el., Sustainable Ammonia Synthesis: Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production; Department of Energy: A report from the Roundtable Discussion held February 16, 2016, March 25, 2016.

Effect of Catalyst Composition

Commercial Pt catalyst - Increased levels of H₂ generation

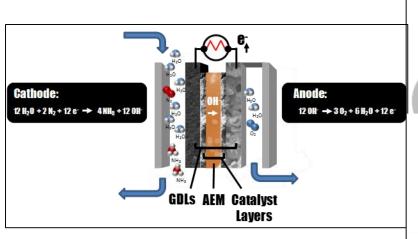
FeNi core-shell catalyst – Increased levels of NH₃ generation

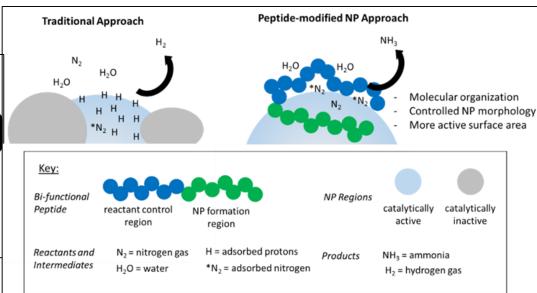


Net ammonia production observed with N₂ (orange) vs. argon control (blue)

 Increasing selectivity for ammonia generation with FeNi core-shell catalyst over hydrogen evolution compared to Pt catalyst

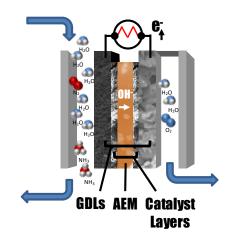
Phase II performance


Ammonia generation rate, with argon background rate subtracted, for each catalyst in Phase II screening effort.


- Only FeNi catalysts with 1:6 and 1:3 NiFe ratios show ammonia production vs. control
 - Down selected for catalyst layer optimization for improved performance
- Work ongoing to refine catalyst structure and combine with N-free membranes

Bio-inspired Catalysts for Ammonia Generation

- Catalyst structures inspired by nitrogenase enzymes are being developed for improved electrochemical ammonia generation
- Peptides can be used to improve the catalytic activity of the catalyst through:
 - Control of reactants at catalyst surface and active sites
 - Formation of structured catalyst nanoparticles



Conclusions

- The developed system provides an adequate test bed
- Proof-of-concept was established for AEM-based ammonia generation
- Careful experiments are required to prove electrocatalytic generation vs. contamination
- Continued understanding and control of catalyst sites is needed for efficient low temperature ammonia generation

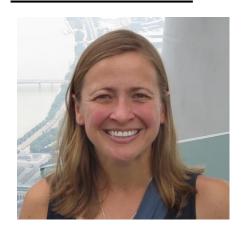
How do we achieve our vision?

Phase II Work:

- Upgrading ammonia rig
- More detailed product analysis
- NiFe and other nanocatalysts
- Membrane/ionomer/electrode optimization
- Demonstrate increased current density and durability

Future Work:

- Fundamental studies on reaction mechanisms
- Bio-inspired catalysts for selectivity
 - Use of catalyst surface peptides to facilitate improved ammonia generation
 - DOE SBIR Phase I project
- Purification and systems work
- Scale-up


Acknowledgements

Proton OnSite:

- Nemanja Danilovic
- Kathy Ayers
- Luke Wiles
- Julie Renner (CWRU)

Collaborators:

Lauren Greenlee

Andrew Herring NIST/Univ. of Arkansas Colorado School of Mines

Funding:

- USDA Phase I/II SBIR
- DOE/AMO Phase I SBIR

