Ammonia as a Key to Meeting the Fuel Demand of China

Zhaolin (Forest) Wang on behalf of Ammonia Fuel Synergy, College of Energy, Xiamen University, Fujian Province, China

Outline

- 1. Fuel consumption and issues in China
- 2. Endeavours of Chinese government
- 3. Unique advantages of using NH_3 as a fuel in China

4. Roadmap of using ammonia as a fuel planned by Xiamen University for Fujian province, China.

5. Ammonia fuel research group of Xiamen University

6. Closing remarks

1. Fuel demand and issues in China

1.1 Sale statistics of vehicles

2015 sale:

<u>China:</u> 20 million (*limited* by lottery policy for environment) vs. <u>US:</u> 17.5 million (*encouraged* for economy growth)

2010-2022 sale increase:

<u>China:</u> 15⁺% per year vs. <u>US:</u> 0% until 2022

1.2 Ownership statistics of vehicles

2015 ownership:

Family based:

<u>China</u>: 34 vehicles/100 families (30% families own 1, and 70% own 0) vs.US: 110 vehicles/100 families (34% own 1, 37% own 2, 20% own 3,

and 9% own 0)

Passenger cars per capita:

China: 0.05 (1 per 20 persons), half of world average.

vs.<u>US</u>: 0.5 (1 per 2 persons)

1.3 Petroleum consumption statistics in China

Redrawn from International Petroleum Economics, pp 44-53, Vol. 24, 2016, in Chinese

All imported petrol goes to cars;

However, the upper limit of ownership is 150 million cars if using fossil fuels in China!

1.4 Related issues

Photochemical smog: CO_2 is not the only issue in China.

1.5 Formation and constituents of photochemical smog

Fine particles + Ground Level Ozone

Surplus O_2 + Hi T (>1200°C)

NOx : Nitrogen Oxides, e.g., NO, NO₂

VOC: Volatile Organic Compounds (VOC), e.g., emitted hydrocarbons.

If carbon is present, then particulates are always present too.

2. Endeavours of Chinese Government

Electricity-based high speed train:

energy efficient; decentralized emissions are centralized and hence significantly reduced.

Electric car:

A govermental promotion focus in the 13th 5-year plan (2013-2017).

However, clean battery production is a bottleneck in addition to the unsatisfactory pricing and performance.

So what and how ?

3. Unique advantages of using NH_3 as a fuel in China

3.1 Clean nature of NH₃

Combustion

H₂: More challenges than NH₃.

NH₃: the other and better hydrogen.

Fuel	Molecular mass	HHV MJ/kg	Air Fuel ratio (AF) Φ=1, mass
Gasoline, C ₈ H ₁₅	111	47.30	14.6
Ammonia, NH3	17	22.50	6.1
Hydrogen, H ₂	2	141.90	34.0
Air: $O_2 + 4N_2$		4	N₂ 500 °C It exhaust stroke
4N ₂ 20 °C at intake stroke			

-- AF for ammonia is only 40% of gasoline, thus approximately 40% less nitrogen is heated and goes to exhaust gases.

-- Energy gain from combustion: 1 kg $NH_3 \approx 0.8$ kg gasoline.

3.2 Production scale and infrastructure

2014 anhydrous NH₃ production:

China: 48 million tons (58 in 2015) US: 9.2 million tons World: 144 million tons

-- China is producing 33% of the world ammonia (vs. US 6.4%);

-- Infrastructure for fertilizer is existing.

3.3 Energy economics

Price:

Anhydrous NH₃ 2015 average: CN Υ 2,100/ton \approx US\$315/ton) Gasoline 2015 average: CN Υ 8,000/ton \approx US \$1200/ton) Energy gain from combustion: 1 kg NH₃ \approx 0.8 kg gasoline

f The cost of NH₃ as a fuel is only 1/3 of gasoline in China!

Potential of future lower pricing:

Off-peak and intermittent power account for 1/3 of the total generation, which can be stored and managed with NH₃ conversion.

3.4 Equivalent market scale

2015 gasoline consumption in China: 110 million tons2015 NH₃ production in China: 58 million tons

Current production of NH₃ can equivalently juice 50% of existing cars!

4. Roadmap of using ammonia as a fuel planned by Xiamen University for Fujian Province

4.1 Dual fuel of "ammonia + natural gas"

Justifications:

- 1. "Gasoline + Natural gas" dual fueled taxis are widely used in China.
- 2. Ignition timing, electronic control and fuel injection are similar for natural gas and ammonia.
- 3. Overcome the slow flame speed issue of ammonia.
- 4. Increase the acceleration of natural gas fueled taxis.

Taxi: "Gasoline + Natural gas"

Timeline:

A demo (passenger car) is ready in 2 years at Xiamen University.

4.2: Dual fuel of "ammonia + methanol"

Justifications:

- Methanol fueled taxis are being used in China;
- 2. Similar air/fuel ratio: air intake control is simplified;
- 3. Similar HHV: thermal design is simplified;
- 4. Miscible: single phase processing and direct injection;
- 5. Cogeneration from coal.

Methanol fueled taxis

Timeline:

Demo ready in 4 years at Xiamen University.

Fuel	Molecular mass	HHV MJ/kg	Air Fuel ratio (AF) Φ =1, mass
Gasoline, C ₈ H ₁₅	111	47.30	14.6
Light diesel, C _{12.3} H _{22.2}	170	44.80	14.5
Heavy diesel, C _{14.6} H _{24.8}	200	43.80	14.5
IsoOctane, C8H18	114	47.80	15.1
Ethanol, C ₂ H ₅ OH	46	29.70	9.0
Methanol, CH ₃ OH	32	22.70	6.5
Ammonia, NH3	17	22.50	6.1
Hydrogen, H ₂	2	141.90	34.0
Propane, C ₃ H ₈	44	49.90	15.7
Heptane, C7H16	100	48.07	15.2
Cetane, C16H34	226	47.28	15.0
Coal, C	12	33.8	11.5
Toluen, C7H8	92	42.5	13.5

Fuel	Formula	Miscibility with NH_3
Hydrocarbons	CH ₃ CH ₂ CH ₃	Insoluble
	$CH_3(CH_2)_4CH_3$	Insoluble
	C ₆ H ₆	Moderately soluble
Culoting of her draw with sur-	$C_6H_5CH=CH_2$	Soluble
Substitutea nyarocarbons	CHBr ₃	Miscible
	C ₂ H ₅ I	Soluble
	BrCH ₂ CH ₂ Br	Soluble
	CI2C==CH2	Miscible
	CH ₃ NO ₂	Miscible
	$C_6H_5NO_2$	Solubility, 24%
Carbonyl derivatives	(CH ₃) ₂ CO	Miscible
	CH ₃ CHO	Miscible
	CH ₃ (CH ₂) ₃ CHO	Easily soluble
	CH ₃ CONH ₂	Very easily soluble
	(H_3CSNH_2)	Easily soluble
	$(H_2N)_2CS$	Solubility, 37%
	CH ₃ CH ₂ CO ₂ CH ₃	Miscible
41	CH CH CH	Miscible
Alcohols		Miscible
	$CH_3(CH_2)_6OH$	Miscible
	C ₆ H ₅ CH ₂ OH	Miscible
	$1,2-C_6H_4(OH)_2$	Very easily soluble
Amines	CH ₃ NH ₂	Miscible
	$(CH_3)_3N$	Miscible
	$CH_3(CH_2)_4NH_2$	Miscible
5.1	C ₆ H ₅ N	Miscible
Ethers	$(C,H_{*}),O$	Miscible
	$[CH_{3}(CH_{2})_{3}]_{2}O$	Soluble
	C ₆ H ₅ OCH ₃	Miscible

5. Ammonia research group of Xiamen University

Research topic	Assistant/associate/full Professors and engineers	
Combustion kinetics and engine prototype	Zhaolin Wang	
Engine efficiency and energy optimization	Yingru Zhao	
Reduction of emissions (NOx, SOx, etc)	Shuirong Li	
Combustion thermodynamics and fluid mechanics	Yaoli Zhang	
Electronic control (fuel injection, ignition timing, etc)	Duo Wang	
Fuel properties	Yueyuan Ye	
Ammonia as A/C refrigerant an fuel line arrangement	Shan Xie	
High performance materials	Yannan Xie	
Solar to NH ₃ fuel	Songsheng Zheng	
Nuclear to NH ₃ fuel	Guang Ran	
H_2 , CH_3OH and NH_3 fueling station and infrastructure	Yunquan Liu	
NH ₃ fuel economics and commercialization pathway	Guangxiao Huang	
Innovation assessment and intellectual property	Binbin Zhang	

6. Closing remarks

1. China is probably the most prospective candidate that utilizes ammonia as a clean fuel;

2. China is joining the ammonia fuel club;

3. Welcome to share the ammonia opportunities of China and be ambitious to initiate a fuel revolution.

