Design of Iron-Nickel Nanocatalysts for Low-Temperature Electrochemical Ammonia Generation

Shelby Foster, David Suttmiller, Prashant Acharya, Zakary Ford, James Burrow, Matt Kleinlauth, Charles Loney, Luke Wiles, Julie Renner, Wayne Gellett, Kathy Ayers, **Lauren Greenlee**

American Institute of Chemical Engineers

November 2, 2017

Vision for Electrochemical Ammonia Production

Ammonia Synthesis

J.N. Renner, L.F. Greenlee, A.M. Herring, K.E. Ayers, The Electrochemical Society Interface, Summer 2015.

Industrial Uses: chemical synthesis, emissions scrubbing, refrigeration

- Electrically driven process for low temp/pressure/emissions
- Compatible with intermittent operation
- High regional demand for fertilizer co-located with renewables

Linear Scaling Relationships Suggest Dominance of HER

Conclusions from theory on novel catalyst design:

- Energetics must scale differently
- Depart from linear scaling relationships completely

E. Skúlason, et al. *Physical Chemistry Chemical Physics*, 14 (2012). Montoya, et al. *ChemSusChem* 2015, 8, 2180 – 2186.

A Team Approach

2014: USDA SBIR Phase I

MINES.

2015-2017: USDA SBIR Phase II

2016-2017: DOE SBIR Phase I

2016-2019: DOE BES NH₃

- Can we make ammonia with FeNi catalysts?
- How do catalyst composition and morphology affect NH₃ production?
- Ammonia contamination: Controls and experimental design?
- What can we learn about the catalyst surface?
- Can we control the surface environment of the catalyst?

Phase I: Initial Results

Can we make ammonia at low temperature?

➤ Alkaline electrolyte & FeNi catalysts

Synthesis Method & Parameter Variation to Control NP Performance

- Molar ratio of stabilizer:Fe
- Fe concentration
- Fe salt / oxidation state
- Type of stabilizer
- 1-step vs 2-step synthesis

- Molar ratio of BH₄:Fe
- Rate of NaBH₄ addition
- Age of NaBH₄

- Molar ratio of stabilizer:Ni
- Molar ratio of Ni:Fe
- Type of stabilizer
- Rate of Ni/stabilizer addition
- Time between BH₄ addition and Ni/stabilizer addition

Ammonia Production Rate at 1.2 V

Coulombic Efficiency

Phase II: Catalyst Composition & Morphology

Synthesis Method & Parameter Variation to Control NP Performance

- Molar ratio of stabilizer:Fe
- Fe concentration
- Fe salt / oxidation state
- Type of stabilizer
- 1-step vs 2-step synthesis

- Molar ratio of BH₄:Fe
- Rate of NaBH₄ addition
- Age of NaBH₄

- Molar ratio of stabilizer:Ni
- Molar ratio of Ni:Fe
- Type of stabilizer
- Rate of Ni/stabilizer addition
- Time between BH₄ addition and Ni/stabilizer addition

Ammonia Contamination

Experimental Design Considerations

- Ammonia adsorption materials of setup
- Gas tight setup
- Gas flow rate
- Electrode positioning/contamination
- Liquid electrolyte vs. gas phase cell
- Acid trap sampling position
- Catalyst/electrode preparation
- Ionomer degradation
- Electrode surface area / size

	Absorbance	Concentration (μM)
Тор	0.122	63.7
Тор	0.126	67.2
Middle	0.105	48.7
Middle	0.125	66.3
Bottom	0.115	57.5
Bottom	0.127	68.1
Average	0.12	61.9
STDev		7.5

Polymer	N_s
PVDF	1.0
PELD	4.4
PTFE	7.5
FEP	8.6
DE 1	/ 2 10 0

PFA $N_s = 10^{12} \text{ molec. NH}_3/\text{cm}^2$ 13.5

Conclusions - Questions

Can we make ammonia at low temp with alkaline electrochemistry?

- > Yes, but efficiencies remain low
- Much we do not understand about catalysts and engineering

Do we have the appropriate controls in place?

> Acid trap background, Ar flow, Ar e-chem, N₂ flow

Do we have a robust experimental design and testing setup?

- ➤ Gas tight, flow meters, materials with low NH₃ adsorption
- > Next: Gas-phase cell / larger electrode SA / electrode engineering

Can we control the surface environment of the catalyst?

- > Future work: Inspirations from nitrogenase enzyme
- Catalyst morphology & composition

Coordinated Catalyst-Surface Chemistry-Theory Approach

Acknowledgements

- Andrew Herring & research group, Colorado School of Mines
- Julie Renner & research group, Case Western Reserve University
- Wayne Gellett, Kathy Ayers, Proton OnSite
- Michael Janik & research group, Pennsylvania State University
- E. Bryan Coughlin & research group, University of Massachusetts, Amherst

Funding Sources:

