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Vision for Electrochemical Ammonia Production

Ammonia Synthesis

Industrial Uses:
chemical synthesis,

' emissions scrubbing,
J.N. Renner, L.F. Greenlge, A.M: Herring, K.E. refrigeration
Ayers, The Electrochemical Society Interface,
Summer 2015.

 Electrically driven process for low temp/pressure/emissions
e Compatible with intermittent operation
e High regional demand for fertilizer co-located with renewables



Linear Scaling Relationships Suggest Dominance of HER
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Conclusions from theory on novel catalyst design:
. : :

Energetlcs mUSt Scale d.lffe rentl.y ] E. Skdlason, et al. Physical Chemistry Chemical Physics, 14 (2012).
* Depart from linear scaling relationships completely Montoya, etal. chemsuschem 2015, 8, 2180 - 2186.



A Team Approach
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e Can we make ammonia with alkaline, low-temp electrochemistry?

e Can we make ammonia with FeNi catalysts?

* How do catalyst composition and morphology affect NH; production?
* Ammonia contamination: Controls and experimental design? ;;‘. A PROTON
e What can we learn about the catalyst surface? e oRETE
e Can we control the surface environment of the catalyst?




USDA
==

4 PROTON

8 o’ ON SITE

Phase I: Initial Results ™

Can we make ammonia at low temperature?
> Alkaline electrolyte & FeNi catalysts




Synthesis Method & Parameter Variation to Control NP Performance
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Ammonia Production Rateat 1.2 V
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Li and Licht (2014): 200 °C, molten NaOH electrolyte
@ 1.2V, 2 mA/cm?: 0.147 mg/cm?/hr, 37% efficiency
@ 1.4V, 25 mA/cm?: 0.41 mg/cm?/hr, 7% efficiency




Coulombic Efficiency
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Phase Il: Catalyst Composition &
Morphology



Synthesis Method & Parameter Variation to Control NP Performance
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Ammonia Contamination




Experimental Design Considerations

e Ammonia adsorption — materials of setup Absorbance  Concentration
e Gas tight setup (kM)
e Gas flow rate Top 0.122 63.7
* Electrode positioning/contamination Top 0.126 67.2
. Middle 0.105 48.7
e Liquid electrolyte vs. gas phase cell Middle 0.125 66.3
e Acid trap sampling position Bottom 0.115 57.5
e Catalyst/electrode preparation Bottom 0.127 68.1
 lonomer degradation Average 0.12 61.9
e Electrode surface area / size STDev 75
/'\_ \\ ............ T /7 /\\
(h ) Y R g Polymer N;
QU AN PVDF 1.0
>y (' a
NH(aq) + H,0() =<——x NH,(aq) + OH" PTFE 13
3(aq) 00) =F]—x s (aq) (aq) FEP 26

NH,/cm? 13.9




Conclusions - Questions

Can we make ammonia at low temp with alkaline electrochemistry?
> Yes, but efficiencies remain low
» Much we do not understand about catalysts and engineering

Do we have the appropriate controls in place?
» Acid trap background, Ar flow, Ar e-chem, N, flow

Do we have a robust experimental design and testing setup?
» Gas tight, flow meters, materials with low NH; adsorption
» Next: Gas-phase cell / larger electrode SA / electrode engineering

Can we control the surface environment of the catalyst?
» Future work: Inspirations from nitrogenase enzyme
» Catalyst morphology & composition



Coordinated Catalyst-Surface Chemistry-Theory Approach
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