Nitride-Based Step Catalysis for Ammonia Synthesis at Atmospheric Pressure

Michael Heidlage, Naanan Shan, Hongfu Luo, Nathan Flesher, Victor Chikan, Bin Liu, and Peter Pf fromm

Department of Chemical Engineering
Kansas State University

2017 AIChE Annual Meeting – Minneapolis, MN
Session 730: NH₃ Fuel Synthesis II
Goal: Versatile, Small Scale Solar NH$_3$ Synthesis

Solar Thermochemical NH$_3$ Synthesis

- **Possible:**
 - Operation near atmospheric Pressure
 - Accommodates inherent intermittent nature of renewable energy
 - Reduced capital investment
 - Tunable/Modular
 - To operate near the end user
 - Perhaps by a single farmer

- **Less Essential:**
 - Transportation infrastructure
 - Politically stable region
 - Technically advanced workforce
NH₃ Synthesis via Solar Thermochemical Cycle

1. N₂
 Mn -> MnₐNₐ

2. P = 1 atm.

3. CH₄
 H₂O
 MnO
 Mn
 MnₐNₐ
 NH₃!!

Synthesis via Solar Thermochemical Cycle
Potential Benefits of the Proposed Solar Cycle

- Produces Valuable Syngas Co-Products
- LHV Upgrade in Products
- Solar Energy Stored as NH₃ and Syngas
- Operable at Pressures Near 1 atm.
- Possible at Smaller Economies of Scale
Experimental Method: Nitrogen Fixation – Rxn #1

- **Goal:** Max Nitrogen Fixed to Mn
- **Find Optimum Rxn Temperature**
 - Range: $600 \, ^\circ C \leq T \leq 1000 \, ^\circ C$
- **Find Optimum Reaction Time**

\[
\[
\frac{5}{2} \text{Mn}_\text{s} + \frac{1}{2} \text{N}_2\text{(g)} \leftrightarrow \frac{1}{2} \text{Mn}_5\text{N}_2\text{(s)} \tag{1A}
\]
\[
4\text{Mn}_\text{s} + \frac{1}{2} \text{N}_2\text{(g)} \leftrightarrow \text{Mn}_4\text{N}_\text{(s)} \tag{1B}
\]
Max Nitrogen Fixation Occurs at 800 °C and 120 min

\[
\frac{5}{2} \text{Mn}(s) + \frac{1}{2} \text{N}_2(g) \leftrightarrow \frac{1}{2} \text{Mn}_5\text{N}_2(s)
\]
\[
4\text{Mn}(s) + \frac{1}{2} \text{N}_2(g) \leftrightarrow 1\text{Mn}_4\text{N}(s)
\]

\[\Delta H_{\text{Rxn}}^{800^\circ C} = -91.0 \text{ kJ mol}^{-1}\]
\[\Delta G_{\text{Rxn}}^{800^\circ C} = -64.3 \text{ kJ mol}^{-1}\]
1A

\[\Delta H_{\text{Rxn}}^{800^\circ C} = -110.6 \text{ kJ mol}^{-1}\]
\[\Delta G_{\text{Rxn}}^{800^\circ C} = -61.0 \text{ kJ mol}^{-1}\]
1B

Mn-Nitride Mixture at Optimal:
- \(\text{Mn}_6\text{N}_{2.58}\)-rich
- w/ \(\text{Mn}_4\text{N}\) also

Nitrogen Content in Solid Product

Weight % Nitrogen Fixed

![Diagram](image)
Experimental Method: Ammonia Synthesis – Rxn #2

\[
\frac{1}{2} \text{Mn}_5\text{N}_2(s) + \frac{5}{2} \text{H}_2\text{O}(v) \leftrightarrow \frac{5}{2} \text{MnO}(s) + \text{NH}_3(g) + \text{H}_2(g)
\]

\[\Delta H_{\text{Rxn}}^{500^\circ C} = -302.4 \text{ kJ mol}^{-1}\]

\[\Delta G_{\text{Rxn}}^{500^\circ C} = -230.5 \text{ kJ mol}^{-1}\]
Alkali-Metal ‘Promotor’ Improves NH$_3$ Yield

Equation:

\[
\text{Mn}_a\text{N}_b + \text{H}_2\text{O} \rightarrow \text{MnO} + \text{NH}_3
\]

Graph:

- **NH$_3$ Yield** [mol NH$_3$/mol N$_\text{Lat}$]
- **Time (min)**
- **Na Promotor:** 0.542
- **No Promotor:** 0.037
Expt. Method: Metal Oxide Reduction – Rxn #3

\[
\frac{5}{2} \text{MnO}_s + \frac{5}{2} \text{CH}_4(g) \leftrightarrow \frac{5}{2} \text{Mn}(s) + \frac{5}{2} \text{CO}(g) + 5\text{H}_2(g)
\]

\[\Delta H^{1150°C}_{\text{Rxn}} = 916 \text{ kJ mol}^{-1}\]

\[\Delta G^{1150°C}_{\text{Rxn}} = -57.1 \text{ kJ mol}^{-1}\]
Partial Conversion of MnO by Dilute CH$_4$ Achieved

- $X_{\text{MnO}} = 0.371 \pm 0.072$
- $Y_{\text{Mn6N2.58}} = 0.381 \pm 0.083$
- CO$_2$ NOT Detected!
- $H_2 / CO = 29.9 \pm 6.0$ mol H$_2$ mol$^{-1}$ CO

T = 1150°C
t = 30 min

Mn$_7$C$_3$ formation an issue

Possible Solutions:
- Co-Feed CO$_2$
- Co-Feed H$_2$
What if We Could Use Renewable H₂?

Nitridation

\[
\frac{5}{2} Mn(s) + \frac{1}{2} N_2(g) \rightleftharpoons \frac{1}{2} Mn_5N_2(s)
\]

All Pressures = 1 atm.

Reduction and NH₃ Synthesis

\[
\frac{5}{2} Mn(s) + 1NH_3(g) \rightleftharpoons \frac{3}{2} H_2(g) + \frac{1}{2} Mn_5N_2(s)
\]

Concentrated Solar Radiation
N₂- H₂ Cycling Expt. Method

• Nitridation:
 ▪ 700 °C
 ▪ 30 min
 ▪ N₂ Flowrate: 2.0 ± 0.1 L min⁻¹

• Reduction:
 ▪ 700 °C
 ▪ 60 min
 ▪ H₂ Flow: 1.8 ± 0.1 L min⁻¹
NH$_3$ Yield Limited When Using Mn Alone

- **Nitridation:**
 - 700 °C
 - 30 min

- **Reduction:**
 - 700 °C
 - 60 min

NH$_3$ Yield
(mol NH$_3$ mol$^{-1}$ N$_{Nitride}$)
XRD Shows Stable Reactant

- **Nitridation:**
 - 700 °C
 - 30 min

- **Reduction:**
 - 700 °C
 - 60 min

Mass Fraction

Nitridation (N₂) – Reduction (H₂) Cycling Stage
Mechanistic understanding of metal nitride reduction

\[2N_{\text{nitride}} + 3H_2(g) \rightarrow 2NH_3(g) \text{ at } 700^\circ C \text{ and } 1 \text{ atm} \]

- On Mn$_4$N, H$_2$ dissociative adsorption is endothermic.
- Reduction of lattice N (N$_{\text{lat}}$), forming NH$_3$, is very endothermic.
- Diffusion energy barrier of subsurface N is 1 eV.
- Hydrogenation of the diffused subsurface N (N$_{ss}$) is also endothermic.
Modifying the properties of Mn$_4$N by doping heteroatom (M)

To modify pure Mn$_4$N to facilitate NH$_3$ formation, it is desirable to:
- lower endothermicity (e.g., increasing H binding energy)
- lower N diffusion energy barrier.

- Heteroatom is introduced to disturb local electronic structures.
- The heteroatom is deliberately placed in the sublayer (‘s’) and the top layer (‘t’) of Mn$_4$N.

Slide provided by Dr. Bin Liu, Kansas State University, Manhattan, KS
Manganese nitride reduction by doping with Fe

The N-Fe bond is expected to be weaker than N-Mn bond, and Fe dopant can:

- Lower diffusion energy barrier of subsurface N
- Lower reduction energy (when Fe is at top surface)
- However, the overall process is still quite endothermic (by > 1.5 eV).

Slide provided by Dr. Bin Liu, Kansas State University, Manhattan, KS
Acknowledgements

Undergraduate Research Asst.:
• Kyle Snow
• Elizabeth Kezar
• Bradley Peterson

Questions?

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0016453.