

NH₃ / N₂ / O₂ Non-Premixed Flame in a 10 kW Experimental Furnace

- Characteristics of Radiative Heat Transfer

Ryuichi Murai¹, Ryohei Omori¹, Ryuki Kano¹, Yuji Tada¹, Hidetaka Higashino¹, Noriaki Nakatsuka¹, Jun Hayashi¹, Fumiteru kamatsu¹, Kimio Iino², Yasuyuki Yamamoto², Yoshiyuki Hagiwara²

1: Combustion Laboratory, Osaka University, Japan

2: Taiyo Nippon Sanso Co. LTD, Tokyo, Japan

- Background
- Objective
- Experimental
- Results and Discussion
- Summary

Background

Global

Paris Agreement: Reduce the greenhouse gas emissions

Japan

CO₂ emissions: 26% reduction of 2013 by 2030

But! After the Fukushima nuclear disaster in 2011

Primary energy supply in Japan depends greatly on the combustion of fossil fuel. (More than 90%)

Realize the Hydrogen based energy for CO₂ free society by 2030

All Japan dream team (government, industry, academic)

^{*}Cross-ministerial Strategic Innovation Promotion Program by Cabinet Office, Government of Japan

What is a Hydrogen based society?

Ammonia: carrier and also energy as a *Direct Combustion*

- Background
- Objective
- Experimental
- Results and Discussion
- Summary

Objective

- Advantages of ammonia
 - ✓ No CO_2 emission $4NH_3+3O_2\rightarrow 2N_2+6H_2O$
 - ✓ Mass production
 - ✓ Transportation and storage
- Issues of ammonia
 - ✓ Low radiant heat flux due to no carbon (low heating efficiency).
 - ✓ Low laminar burning velocity (instable)
 - ✓ High NOx emissions

Objective of this study

How is Ammonia combustion with enriched oxygen in a furnace?

- ✓ Higher radiative characteristics?
- ✓ Higher temperature?
- ✓ Stable?

- Background
- Objective
- Experimental
- Results and Discussion
- Summary

Experimental Apparatus; 10kW test furnace

Photograph of 10kW test furnace

Experimental Apparatus; Measurement probe

✓ Simple Radiative heat flux & IR spectrum measurement system

- Background
- Objective
- Experimental
- Results and Discussion
- Summary

Radiative heat flux and Temperature

Experimental conditions

	Fuel	Air ratio (%)	O2 concentration in the oxidizer (vol. %)	Lower heating Value (kW)
1	NH3	1.05	21	10
2	CH4	1.05	21	10
3	NH3	1.05	30	10

The 30 vol.% of O_2 enriched air concentration could result in the higher temperature and could produce 1.4 times total heat flux compared with the combustion in the methane/air condition.

IR spectrum measurement 1

- 95% of heat flux doesn't come from frame but furnace wall.

Result of IR Spectrum 2

- The intensity of spectrum around 2.7 μ m decrease due to H2O and CO2 in case of NH3 combustion.
- The peak position of the radiative heat flux in ammonia combustion shitted to the downstream region
- The oxygen enriched combustion can shorten the distribution of the radiative heat flux and put the peak position of it toward a nozzle region.

Conclusion

- We developed the simple spectrum measurement system and the heat flux probe.
- ♦ The 30 vol.% of O_2 enriched air concentration could result in the higher temperature and could produce 1.4 times total heat flux compared with the combustion in the methane/air non-premixed condition.

We showed the probability that a direct combustion of ammonia can be applied to a realistic usage in an industrial furnace.

Acknowledgement

This research is supported by the national program of the Cross-ministerial Strategic Innovation Program (SIP) in Japan.

Thank you for kind attention.

?