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Proton OnSite Overview

» World leader in PEM water electrolysis
« Subsidiary of Nel ASA, based in Oslo, Norway

« 2,700 Systems delivered in 75 countries for:
* Industrial applications
» Laboratory markets

 Military customers n e l. ¢

* Fueling and energy storage
* |ISO 9001:2008 certified
* ~ 100 employees at U.S. operations




Commercial Electrolysis Technologies

+ Liquid KOH

* Enables non-noble metals

 PEM = solid electrolyte
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HOGEN® M Series

HOGEN®
HOGEN® S Series
GC
= 680 cm?
v 50 Nm3/hr
100 kg/day
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4.3 kg/day
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Renewable ammonia production
yesterday...
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Rjukan, Norway; 1927 — 1970’s Glomfjord, Norway;

« Two largest electrolyser plants worldwide

« Capacity: 30 000 Nm?3h each

* Energy consumption: approximately 135 MW each
« Supplied by renewable hydro power



... and large scale electrolysis
plants for today’s energy markets

Nel Hydrogen GIGA Factory concept:
400 MW system design study for commercial customer | ¥

Largest electrolyser plant ever designed
* International industrial customer

* Tied to solar power > @
e CAPEX: ~S175M

e Benchmark CAPEX ratio: $450/kW

* Capacity for more than 300,000 FCEVs
* Plant intended primarily for
power-to-gas applications



Research needs: large scale,
renewable H,

* Smallest HB reactors are 3-10 tons/day
 Larger reactors are currently more cost effective

* Distributed options will need advancements for both steps
* H2 production scale up; efficient scaled down HB

* Electrolysis shows capital cost pathway but work needed across multiple areas
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Low Temperature Electrochemical
Ammonia Synthesis Approach

Concept: Challenges:

*Electrolysis anode, ammonia  *Breaking N, triple bond
generation at cathode * Competing H, reaction

* Alkaline membrane to « Efficiency measurement
enable range of catalysts at low production

* Efficiency requirements
for cost targets

Anion Exchange Membrane




Catalyst design approaches

Further details in talks from L. Greenlee and J. Renner

* Nanoparticle alloying * Peptide templating
Control over size and Molecular organization
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Test Development

* Pressurized low temperature electrochemical test stand

* Bake out process before build to remove N,
contamination

* Argon controls for all experiments

* Assay for measurement of
NH; quantity produced




Importance of Controls

Sources of Contamination:

* Membrane backbone degradation: many AEMs have
guaternary ammonium anions or other N sources

* Catalyst absorption/desorption of N2; decomposition of
nitride-based catalysts

* Dissolved gases in flow fields, gas diffusion layers, cell parts
e Can vary from day to day with environmental conditions

* Low generation levels make detection harder



Example Results

All measurements at constant potential; different
catalysts could have different optimal operating points
* Gross NH; measurement _ “"" o
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Future Directions

* Catalyst architecture critical; need to tailor N, access,
absorption strengths, and H, affinity
* Programs to date have provided good direction
* Need to suppress H, generation while designing active site for
N, splitting
* Optimization of operating conditions
» Upgrades to test stand for pressurization improved efficiency

* Need controls and accurate means for NH; detection
* Direct GC integration needed for generation rate
* Assay only provides total amount



Conclusions

* Renewable H, generation (via water electrolysis) reaching
relevant scale for “green ammonia”
* Will lead any transition
* Direct electrochemical pathway could be long term
option
* Promising directions being identified
* Requires precise catalyst design and synthesis

* Industry-academia collaboration accelerates learning
* Early device integration provides insights
* Importance of operating conditions
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