

"Nitrogenase Inspired Peptide-Functionalized Catalyst for Efficient, Emission Free Ammonia Production"

NH3 Fuel Conference 2017, Minneapolis

Stephen Szymanski, Director – Business Development

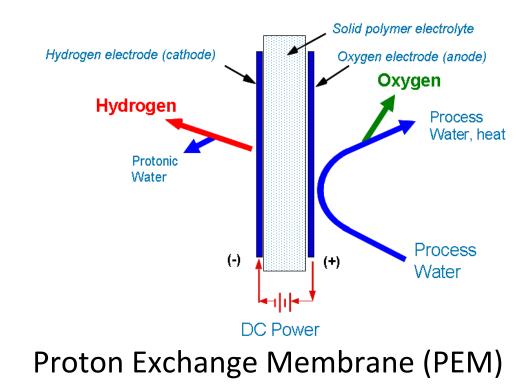
November 8, 2017

© 2017 Proton Energy Systems, Inc.

Proton OnSite Overview

- World leader in PEM water electrolysis
- Subsidiary of Nel ASA, based in Oslo, Norway
- 2,700 Systems delivered in 75 countries for:
 - Industrial applications
 - Laboratory markets
 - Military customers
 - Fueling and energy storage
- ISO 9001:2008 certified
- ~ 100 employees at U.S. operations

nel•


HYDROGEN

HYDROGEN

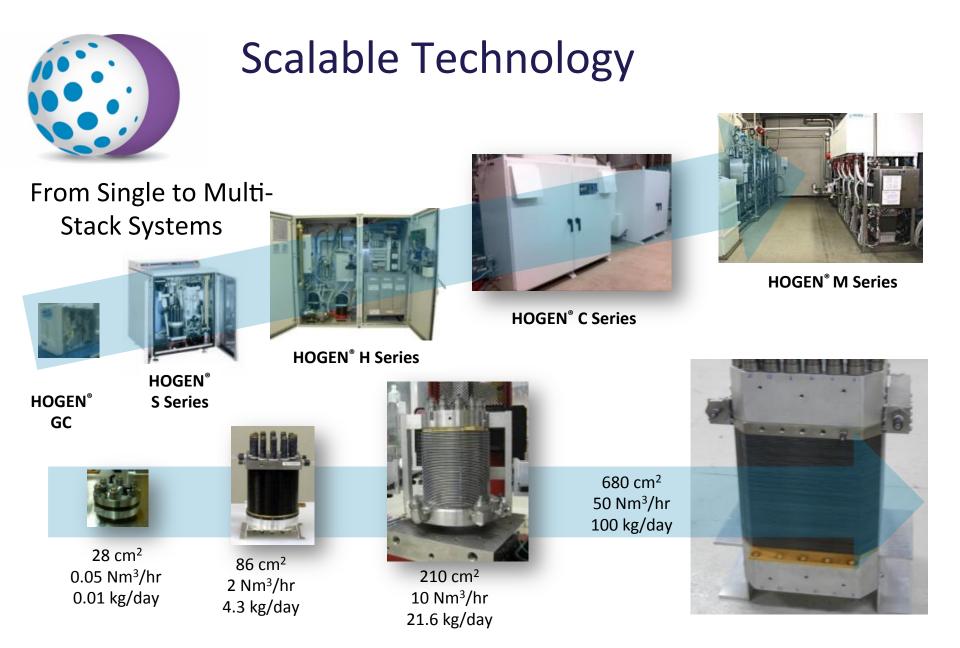
Cathode

Commercial Electrolysis Technologies

- Liquid KOH
 - Enables non-noble metals
- PEM = solid electrolyte
 - Simple, low maintenance BOP

Liquid KOH

DIAPHRAGM


Electrolyte Solution


OXYGEN

OXYGEN

Anode

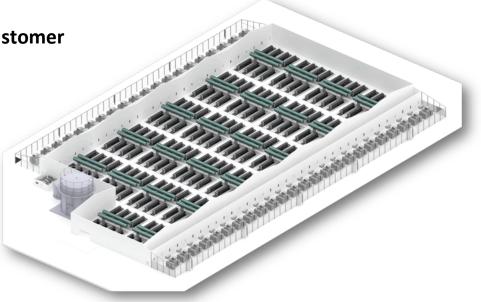
+

Renewable ammonia production yesterday...

Rjukan, Norway; 1927 - 1970's

Glomfjord, Norway; 1953 - 1991

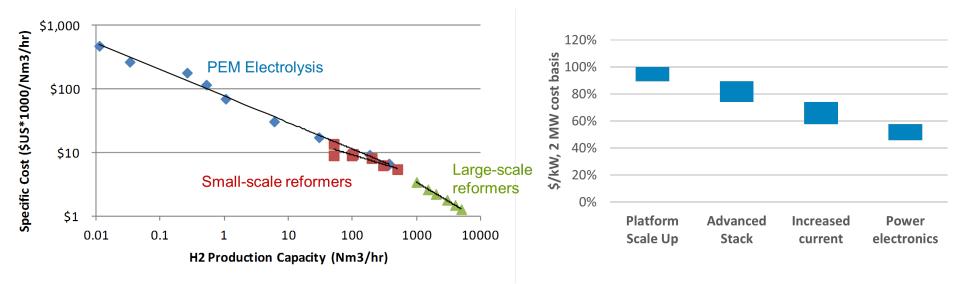
- Two largest electrolyser plants worldwide
- Capacity: 30 000 Nm³/h each
- Energy consumption: approximately 135 MW each
- Supplied by renewable hydro power



... and large scale electrolysis plants for today's energy markets

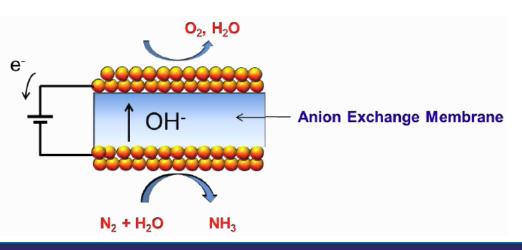
Nel Hydrogen GIGA Factory concept: 400 MW system design study for commercial customer

Largest electrolyser plant ever designed


- International industrial customer
- Tied to solar power
- CAPEX: ~\$175M
- Benchmark CAPEX ratio: \$450/kW
- Capacity for more than 300,000 FCEVs
 - Plant intended primarily for power-to-gas applications

Research needs: large scale, renewable H₂

- Smallest HB reactors are 3-10 tons/day
- Larger reactors are currently more cost effective
- Distributed options will need advancements for both steps
 - H2 production scale up; efficient scaled down HB
- Electrolysis shows capital cost pathway but work needed across multiple areas

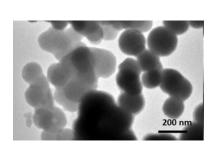


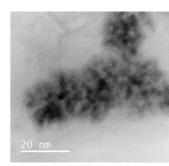
Low Temperature Electrochemical Ammonia Synthesis Approach


Concept:

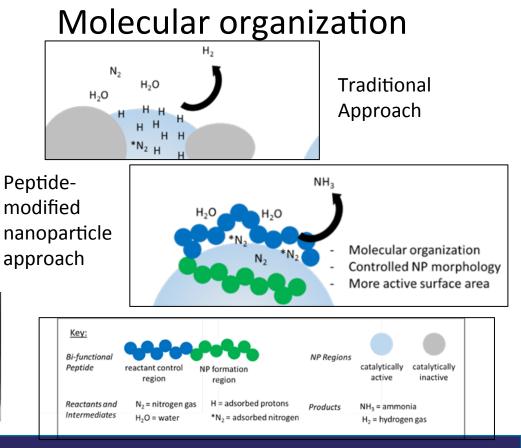
- Electrolysis anode, ammonia generation at cathode
- Alkaline membrane to enable range of catalysts

Challenges:


- Breaking N₂ triple bond
- Competing H₂ reaction
- Efficiency measurement at low production
- Efficiency requirements for cost targets



Catalyst design approaches


Further details in talks from L. Greenlee and J. Renner

Nanoparticle alloying
 Control over size and composition

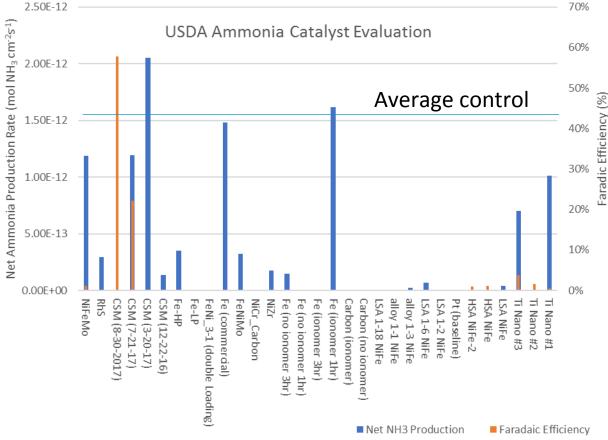
Peptide templating

Test Development

- Pressurized low temperature electrochemical test stand
- Bake out process before build to remove N₂ contamination
- Argon controls for all experiments
- Assay for measurement of NH₃ quantity produced

Importance of Controls

Sources of Contamination:


- Membrane backbone degradation: many AEMs have quaternary ammonium anions or other N sources
- Catalyst absorption/desorption of N2; decomposition of nitride-based catalysts
- Dissolved gases in flow fields, gas diffusion layers, cell parts
 Can vary from day to day with environmental conditions
- Low generation levels make detection harder



Example Results

- Gross NH₃ measurement only 2X net generation
- Some samples with lower current are higher efficiency – larger net ammonia generation
 - Importance of H₂ suppression
- Pressurized cell showed better conversion

All measurements at constant potential; different catalysts could have different optimal operating points

Future Directions

- Catalyst architecture critical; need to tailor N₂ access, absorption strengths, and H₂ affinity
 - Programs to date have provided good direction
 - Need to suppress $\rm H_2$ generation while designing active site for $\rm N_2$ splitting
- Optimization of operating conditions
 - Upgrades to test stand for pressurization improved efficiency
- Need controls and accurate means for NH₃ detection
 - Direct GC integration needed for generation rate
 - Assay only provides total amount

- Renewable H₂ generation (via water electrolysis) reaching relevant scale for "green ammonia"
 - Will lead any transition
- Direct electrochemical pathway could be long term option
 - Promising directions being identified
 - Requires precise catalyst design and synthesis
- Industry-academia collaboration accelerates learning
 - Early device integration provides insights
 - Importance of operating conditions

Acknowledgements

Funding:

- USDA/NIFA
- DOE/AMO

Collaborators:

Lauren Greenlee Univ. of Arkansas Andrew Herring Colorado School of Mines

Julie Renner Case Western Reserve

15