
Ammonia: Opportunities for Grid Support

Mark Ruth

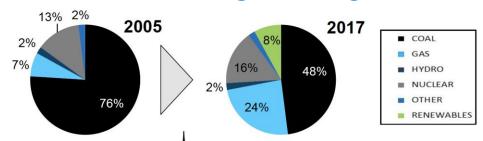
NH3 Energy Implementation Conference Pittsburgh, PA November 1, 2018

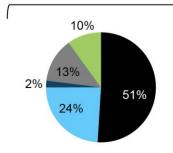
Technology Development is Impacting the Grid

- Cost of renewable electrons dropping dramatically
- Increased electrification
- Connectivity, autonomy, machine learning

Source: (Arun Majumdar) 1. DOE EERE Sunshot Q1'15 Report, 2. DOE EERE Wind Report, 2015

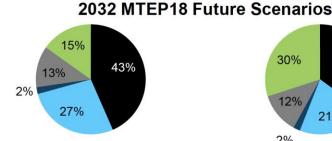
Low Prices for Wind and Solar

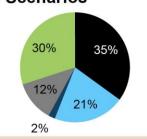

Overall Summary and Pricing Received


	Technology	# of Bids	Bid MW (ICAP)	# of Projects	Project MW	Average Bid Price	Pricing Units	Comments
Asset Sale or Option	Combine Cycle Gas (CCGT)	7	4,846	4	3,055	\$959.61	\$/kW	
	Combustion Turbine (CT)	1						
	Solar	9	1,374	5	669	\$1,151.01	\$/kW	
	Wind	8	1,807	7	1,607	\$1,457.07	\$/kW	
	Solar + Storage	4	705	3	465	\$1,182.79	\$/kW	
	Wind + Solar + Storage	1						
	Storage	1						
Purchase Power Agreement	Combine Cycle Gas (CCGT)	8	2,715	6	2,415	\$7.86	\$/kW-Mo	+ fuel and variable O&M
	Solar + Storage	7	1,055	5	755	\$5.90	\$/kW-Mo	+ \$35/MWh (Average)
	Storage	8	1,055	5	925	\$11.24	\$/kW-Mo	_
	Solar	26	3,591	16	1,911	\$35.67	\$/MWh	
	Wind	6	788	4	603	\$26.97	\$/MWh	
	Fossil	3	1,494	2	772	N/A	la per e e e e	Structure not amenable to price comparison
	Demand Response	1						
	Total	90	20,585	59	13,247			

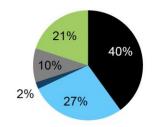
- Wind and solar power purchase agreements (PPAs) are key opportunities.
 - Indiana IRP Averages:
 - Wind<\$27/MWh
 - Solar<\$36/MWh
- Expiring PPAs may have even lower prices

Impacting Grid Mixes around the World


The Midwest Independent System Operator (MISO) expects significant growth in renewable and gas-fired generation


Limited Fleet Change

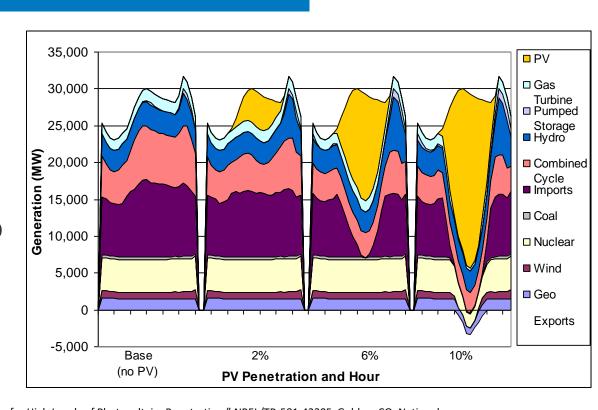
Stalled generation fleet changes, Limited renewables additions driven solely by existing RPS under limited demand arowth.


Continued Fleet Change

Continuation of the renewable addition and coal retirement trends of the past decade.

Accelerated Fleet Change

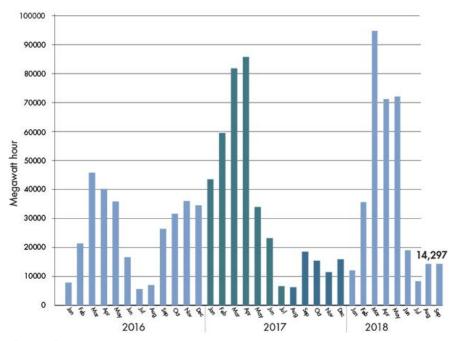
Renewables and demand side technologies added at a rate above historical trends. Fleet changes result in a 20% CO2 emission reduction1.


Distributed & Emerging Tech

New renewable additions largely distributed and storage resources colocated with largest sites.

Need for Additional Grid Flexibility

Increased renewables penetration can lead to

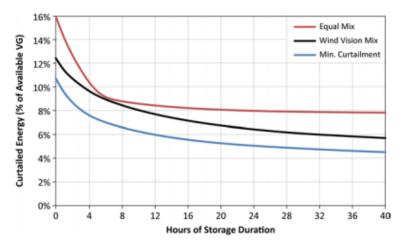

- 1) over generation / curtailment
- 2) unprecedented ramp rates for dispatchable generation

Curtailment in California

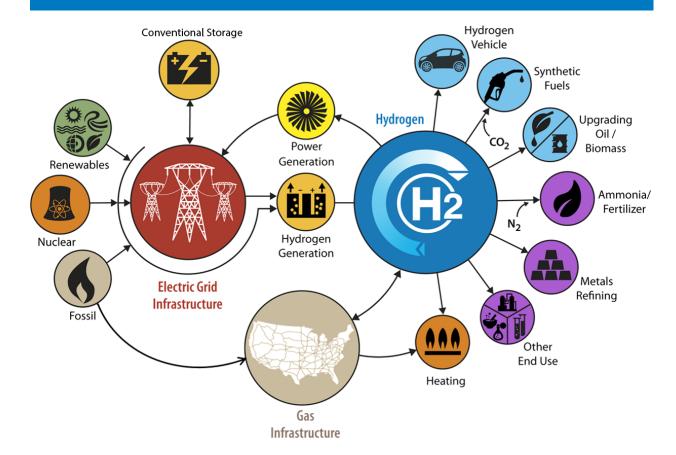
- During January July 2018, California curtailed over 315,000 MWh
- If California meets its
 50% Renewable Portfolio
 Standard target, up to 5%
 of the renewable
 electricity generated
 could be curtailed

Monthly Curtailment in California

Sources: CAISO Data from http://www.caiso.com/informed/Pages/ManagingOversupply.aspx. Accessed October 15, 2018 James Nelson & Laura Wisland. Achieving 50 Percent Renewable Energy in California.

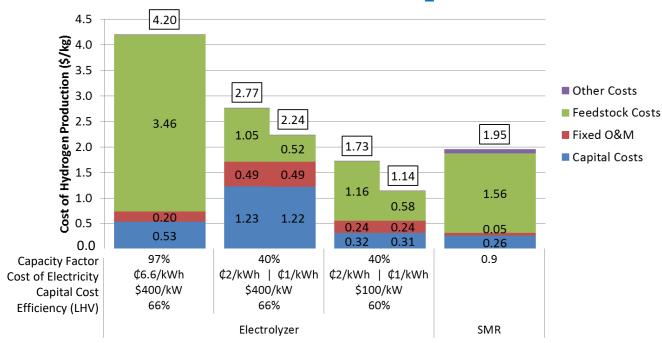

Negative Electricity Prices

Curtailment
often coincides
with negative
prices; negative
price times are
also increasing


Seasonal Storage Opportunity

- Analysis at 55% penetration of wind and solar in ERCOT with 8.5 GW of storage capacity (¼ of peaking capacity)
- Over 4% of electricity generated by wind and solar is curtailed at at 40 hours of storage duration
- Seasonal storage can overcome that limitation

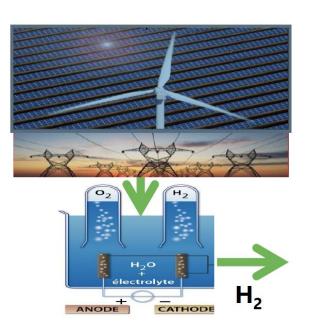
b) Fixed storage capacity (8.5 GW)

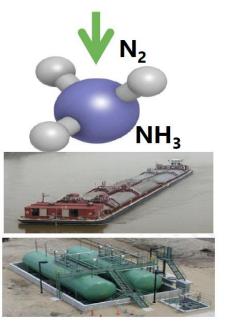

H2@Scale Opportunity

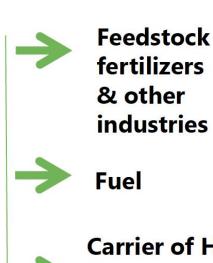
- Interface opportunities
- Value propositions lie across the make, move, use, and store focus areas
- Key drivers:
 - Markets
 - Linkages
 - Partners

Technology Development: Electrolysis

Potential Levelized Costs of H₂ Production


- **Electrolytic** hydrogen has the potential to be cost competitive
- Need H₂ market access
- **Business** opportunities:
 - H₂ production
 - **Electrolysis** equipment and supply chain


Source: Bryan Pivovar "Introduction to H2@Scale" Presentation at 2017 DOE Hydrogen and Fuel Cells Program Review. https://www.energy.gov/sites/prod/files/2017/06/f34/fcto_june_2017_h2_scale_review_pivovar.pdf (June 9, 2017)

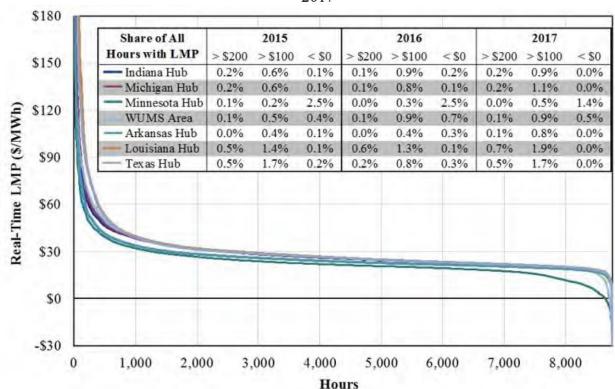

10

Growing Opportunities for Ammonia

A large transport, storage, and distribution network exists & can leverage additional opportunities

Thank you

www.nrel.gov


PR-6A20-72635

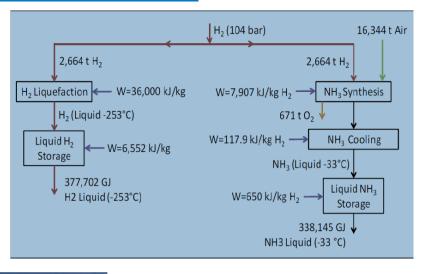
This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Electricity Prices are Getting More Volatile

Figure A2: Real-Time Energy Price-Duration Curve 2017

- Hours with
 energy at very
 low and very high
 prices are
 increasing
- Other revenue streams (e.g., capacity, services) are becoming more critical
- Impacting generators' operations

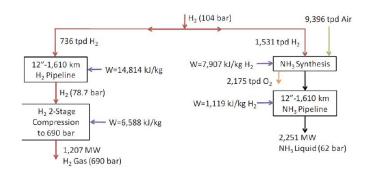
13

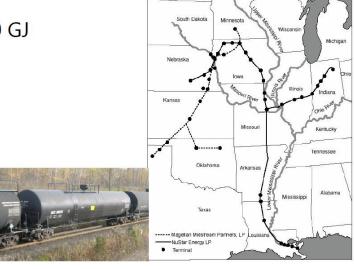

Example of an Ammonia Opportunity

- BASF and Yara opened a low-carbon ammonia plant in April
- Freeport, TX
- Primary hydrogen supply:
 - By-product from Dow's ethylene cracking units
- Economic drivers:
 - Greener ammonia
- Linked to hydrogen pipeline and storage projects
- Reduction based on carbon credits

Storing H₂ and NH₃

Storage	Tank cap.	Density (Kg/m³)	Vol. densit y (MJ/l)	Cost (\$/GJ) 182 d.
LH ₂ (-253°C)	900 t	72.41	8.685	99
H ₂ 350 bar	90 t*	23.65	2.837	
H ₂ 700 bar		39.69	4.761	
LNH ₃ (-33°C)	60 kt		15.37	4
NH ₃ 9-17 bar	270 t		13.77	




^{*} In tanks. Can be much more in salt caverns

Transporting H₂ and NH₃

Trailer trucks: CH₂: 48 GJ; LH₂: 553 GJ; NH₃: 600 GJ

1610 km pipelines	Efficiency	Cost (\$/kg H ₂)	Carrying capacity
H ₂	86.9%	0.70- 3.22	1,207 MW
NH ₃	93.4%*	0.194	2,251 MW

16