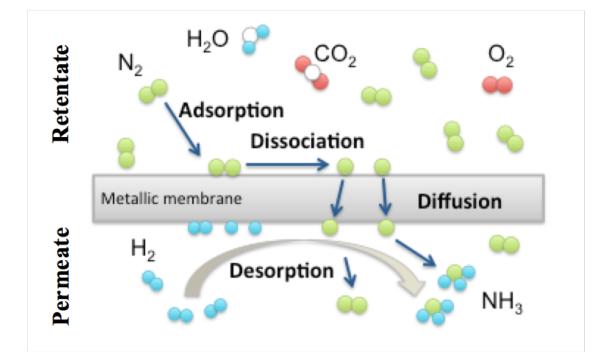


Vanadium As a Potential Catalytic Membrane Reactor Material for NH₃ Production

Simona Liguori and Jennifer Wilcox


Worcester Polytechnic Institute

2018 NH₃ Fuel Conference – Oct 31st 2018

Aim

Ammonia production through a catalytic membrane reactor configuration using Earth-abundant metals for the N₂-selective membrane reactor at low pressure, up to 30 bar and low temperature 400 C, instead of the typical conditions used in the Haber-Bosch process.

N₂ Selectivity Metallic Membranes – Low pressure

WORCESTER POLYTECHNIC INSTITUTE (WPI)

400 °C

∆p [bar]	Nb	Та	V
2	34	28	40
3	45	40	57
4	62	45	62
5	68	57	73

N_2 Permeating Flux [L/m²/day]

Metallic membranes (V, Nb, Ta) are entirely selective for N₂ over He and CO₂ ($\alpha = \infty$)

Fluxes are low

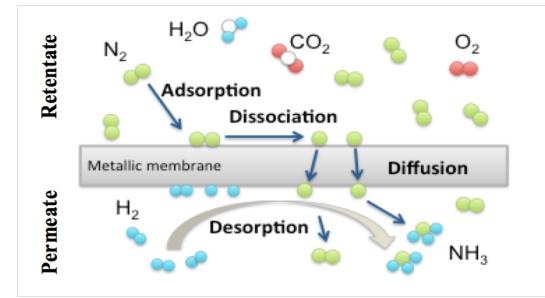
Metallic thin films, an order of magnitude thinner than foils, may lead to significantly higher fluxes

N₂ Selectivity Metallic Membranes – High pressure

WORCESTER POLYTECHNIC INSTITUTE (WPI)

- At each temperature, no He and CH₄ were detected during the testing. Only N₂ permeated through the membrane.
- The following table shows the comparison between V and Fe membranes by performing permeation testing with pure N_2 at different temperature and pressure.

$N_2 [L/m^2/day]$						
p [bar]	T = 400 - V	T = 400 - Fe	T = 500 - V	T = 500 - Fe	T = 600 - V	T = 600 - Fe
30	116	88	239	158	402	(15)
40	156	125	352	225	603	26
50	216	165	465	311	828	33
60	271	211	577	376	1079	45


• V membrane shows better performance in terms of N_2 permeation with respect to Fe membrane.

• At 600 °C, the N_2 permeating flux dropped dramatically.

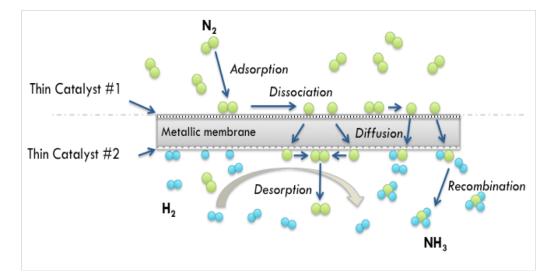
Ammonia Synthesis by using V membrane

WORCESTER POLYTECHNIC INSTITUTE (WPI)

Data at 500 C and 60 bar – V membrane

	NH ₃ [mol/cm ² s]
Permeate side (1 bar)	3.91E-10
Retentate side (60 bar)	3.71E-10

Only 5% of the permeate nitrogen reacts to form NH₃


Deposition of thin layer V-Ru on V membrane

A V-Ru thin layer(~150 nm) was sputtered on three V membranes.

V-Ru was sputtered on three different samples:

- Retentate side of the V membrane
- Permeate side of another V membrane
- Both sides of the V membranes

V-Ru thin layer on V membrane – retentate side

- The membrane was characterized by permeation tests with pure gases.
- With respect the pure V membrane v-Ru/V showed an improved permeated flux.
- The improvement was approximately of 5% at each condition.

Data at 500 C and 60 bar – V-Ru/V membrane

	NH ₃ [mol/cm ² s]	NH ₃ [mol/cm ² s] (V membrane)
Permeate side (1 bar)	4.11E-10	3.91E-10
Retentate side (60 bar)	4.55E-10	3.71E-10

Work in progress on:

- V/V-Ru \rightarrow where the thin layer of V-Ru is deposited on the permeate side
- V-Ru/V/V-Ru \rightarrow where the thin layer is deposited on both sides of the membranes

- V, Nb, Ta, Fe show infinite ideal selectivity with respect to He, CO₂ and CH₄ → only N₂ can permeate through the membranes
- N₂ permeation flux through the membrane is extremely low
- NH₃ production strongly depends on the N₂ permeation and the presence of catalyst

Future Work

- Reduce the thickness of the metallic membrane
- Prepare defect-free inorganic membrane able to work for long periods
- Quantify ammonia production as a function of temperature, pressure gradient and membrane material

WORCESTER POLYTECHNIC INSTITUTE (WPI)

THANKS FOR YOUR KIND ATTENTION