Basic co-firing characteristics of ammonia with pulverized coal in a single burner test furnace

Energy Engineering Research Laboratory
Central Research Institute of Electric Power Industry

Akira Yamamoto*, Masayoshi Kimoto, Yasushi Ozawa, Saburo Hara

2018 NH₃ fuel conference
October 31st, 2018
Objective of this study

Direct and blended combustion of ammonia in **pulverized-coal-fired power plant** is expected one of the promising technology regarding CO\textsubscript{2} reduction.

What is the significant challenge of ammonia as a fuel?

Ammonia (NH\textsubscript{3}) contains N atom.
- It can be **main source of fuel-NOx**.

If NOx emissions from combustion furnace increase;

- More quantity of NH\textsubscript{3} for flue-gas denitration (de-NOx)
- Improvement or addition of denitration equipment

In this study, we examined the basic blended-combustion characteristics of pulverized coal and ammonia using a single-burner combustion test furnace.
Outline of the test furnace

View of the single burner

Typical conditions of the experiment

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion load</td>
<td>760 kW</td>
</tr>
<tr>
<td>(Coal consumption)</td>
<td>(≒100 kg/h)</td>
</tr>
<tr>
<td>Furnace size</td>
<td>Φ0.85m × 8m</td>
</tr>
<tr>
<td>Set exhaust O₂</td>
<td>4.0 %</td>
</tr>
<tr>
<td>Staged air / Total air</td>
<td>30 %</td>
</tr>
</tbody>
</table>

Flow rate of NH₃: Max. 30.0kg/h → Max. 20.3% (LHV basis) of the total load
NH₃ injection into the coal burner

Ammonia injection pipe is inserted into the pulverized-coal burner.
Ammonia is injected into the pre-OFA zone through the measurement port.
Experimental conditions

Experimental parameters
① Percentage of NH₃ blending (Max. 20%(LHV basis))
② Position of the side port where NH₃ is injected

Typical coal properties
Common bituminous coals were used for the experiment.

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MO1</td>
</tr>
<tr>
<td>Moisture (AD)</td>
<td>%</td>
<td>2.8</td>
</tr>
<tr>
<td>Ash (dry)</td>
<td>%</td>
<td>12.6</td>
</tr>
<tr>
<td>Volatile matter (dry)</td>
<td>%</td>
<td>35.4</td>
</tr>
<tr>
<td>Fixed carbon (dry)</td>
<td>%</td>
<td>52.1</td>
</tr>
<tr>
<td>Nitrogen (dry)</td>
<td>%</td>
<td>1.74</td>
</tr>
<tr>
<td>LHV (dry)</td>
<td>MJ/kg</td>
<td>29.2</td>
</tr>
</tbody>
</table>
When NH$_3$ was injected into the pulverized-coal burner

- Co-firing rate ≤ 10% \iff Exhaust NOx was much the same as coal combustion.
- Co-firing rate ≥ 10% \iff Exhaust NOx increased as input NH$_3$ increased.
Effect of NH$_3$ injection position

Exhaust NO$_x$ concentration were decreased by injecting NH$_3$ through the side port, compared with injecting NH$_3$ into the coal burner.
Streamwise distributions of O_2 & NO_x

- In the case of NH_3 injection into the burner, NOx generation in the flame is low but it increases after the staged-air injection.
- In the case of NH_3 injection at 1.0 m from the burner, NOx is decreased after NH_3 injection and is not much regenerated after the staged-air injection.
Unburned carbon concentration in the fly ash is slightly high in the case of NH$_3$ injection into the burner.

Unburned NH$_3$ concentration is increased by injecting NH$_3$, but is enough low considering the detection limit.

NH$_3$ injection through the side port has an advantage regarding the unburned carbon in the fly ash as well as NOx.
Exhaust N$_2$O concentration

N$_2$O concentration was increased when NH$_3$ was injected into the burner, but is negligibly low to work as global warming gas.
Conclusions

Basic co-firing characteristics of pulverized coal and ammonia was investigated using single-burner test furnace. Main conclusions are below.

(1) Effect of NH₃ co-firing rate to NOx generation in case of injecting NH₃ into the coal burner
- Co-firing rate ≤ 10% ⇒ Exhaust NOx was much the same as coal combustion.
- Co-firing rate ≥ 10% ⇒ Exhaust NOx increased as input NH₃ increased.

(2) Effect of position of the side NH₃ port
- When NH₃ was injected at 0.6 m or 1.0 m from the pulverized-coal burner, NOx in the flue gas was decreased compared with the case injecting NH₃ into the coal burner.
- By injecting NH₃ into low O₂, high NOx region, fuel-NOx generation is suppressed and NH₃ possibly works also as reductant for existing NOx.

(3) Effect of NH₃ injection to unburned content
- When NH₃ was injected into the burner, unburned carbon in the fly ash slightly increased probably due to the lower flame temperature.
- Unburned NH₃ concentration was enough low even in the cases of NH₃ co-firing.
Acknowledgement

This research was supported by “Energy Carrier” in Strategic Innovation Promotion Program (SIP) by Japan Science and Technology Agency (JST). We appreciate the support from all concerned.
Thank you for your attention!