

Simulation Analysis of NH₃ Mixed Combustion in Clinker Manufacturing Process

Tatsuro Izumi
Strategic Core Technology Research Laboratory

UBE | UBE INDUSTRIES,LTD.

Introduction

UBE INDUSTRIES,LTD.

- ✓ In order to realize a low-carbon society, it is necessary to diffuse large-scale use of renewable energy and hydrogen energy.
- ✓ Consistent technology from NH₃ production, transportation to storage is already developed. Therefore, it is expected that NH₃ is utilized as a CO₂-free energy source by directly using as a hydrogen energy carrier.

We participated in the project (SIP*) and conducted technical development and empirical research to thermally utilize NH₃ in the industrial furnace.

- Estimation of CO₂ reduction effect by applying NH₃
- Mixed combustion basic experiment in small industrial furnace
- Experiment of clinker firing in small industrial furnace
- ➤ Simulation study ←today's topic
- **Strategic Innovation Promotion Program (2014/04-2019/03)

Process Simulation

Simulator (KilnSimu)

- It has several functions specialized in kiln operation analysis. (residence time in kiln, etc.)
- It is based on thermodynamic equilibrium theory.

Model

We selected our own kiln as an analysis target.

length: 87m outer diameter: 4.8m production volume: 200t/h

➤ The analysis target is limited to the kiln in order to check the influence of NH₃ mixed combustion in the kiln.

clinker composition at products exit

	Coal Only	NH ₃ mixed
C3S (wt%)	59.43	44.18
C2S (wt%)	16.50	27.42
C3A (Aluminate, wt%)	8.88	8.77
C4AF (Ferrite, wt%)	9.21	9.17
f-CaO (wt%)	0.32	4.68

↑ less than 1% is desirable.

It cannot be satisfied with the 30% NH₃ condition examined this time.

✓ For this reason, it is thought that radiation heat transfer decreased due to a change in gas composition in the kiln and sufficient thermal energy was not supplied to the raw material.

Results and Discussion (2)

ε: emissivity (-)

C : correction factor of emissivity (-)

 C_{SO} : spectral-overlap correction factor (-)

The emissivity of the mixed gas in KilnSimu is given by

$$\epsilon_g = (\epsilon_{C02} C_{C02} + \epsilon_{H20} C_{H20}) (1 - C_{S0})$$

 \rightarrow Coal only : $\varepsilon_g = \underline{0.293}$, NH₃ mixed : $\varepsilon_g = \underline{0.268}$

Solid Lines: Coal Only Condition Dotted Lines: NH₃ mixed Condition

The heat flow rate of radiation of NH₃ mixed condition is greatly reduced.

heat flow rates from the combustion gas

Operational Condition for NH₃ Mixed Operation

To satisfy cement clinker quality indicators under NH₃ mixed condition, we studied thermal efficiency improvement plans.

- (i) reduced production
- (ii) oxygen enrichment operation

- ✓ If we set the target value of f-CaO to be <1.0%, we found that it is necessary to reduce production by about 1.3%.
- ✓ About oxygen enrichment operation, when the O_2 concentration is 23.5%, the value of f-CaO is 0.27%. It is about the same level as in the case of coal only combustion condition.

relation between the reduced production rate and f-CaO

Thank you for your attention!

This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "energy carrier" (Funding agency: JST)