Ammonia as Marine Fuel
NH3 Fuel Conference
Niels de Vries - 31st Oct 2018
C-Job Naval Architects

• Largest independent ship design & engineering company in the Netherlands
• A passion for everything that floats
• 4 offices: Hoofddorp, Heervenveen, Rotterdam and Nikolayev
• >140 in-house engineers employed

• Activities
 • Naval Architecture
 • Mechanical Engineering
 • Structural Engineering
 • Interior Engineering
 • Building Supervision
Emissions Maritime Industry

- International shipping responsible for +/- 90% of the world trade
- Shipping and aviation not included in Paris agreement
Regulations

- SOx: Sulphur cap
 - 0.5% Global 2020
 - 0.1% ECA
- NOx: IMO Tier III (Global pending)
 - Tier II Global
 - Tier III ECA
- CO2: Energy Efficiency Design Index

ECA: Environmental Control Area
Natural Gas & Exhaust Gas Treatment Movement
IMO Goals

• IMO: reducing overall carbon intensity of the cargo transported per kilometer by at least:
 • 40% by 2030
 • 70% by 2050
 (compared to 2008)

• IMO: reduce total annual GHG emissions by at least 50% by 2050 (compared to 2008)
 • Pursuing efforts towards phasing them out entirely
Renewable Fuel Momentum

- Exhaust gas treatment and application of natural gas insufficient to meet IMO goals
- Upcoming momentum for renewable fuels
- Challenges
 - Capacity renewable energy production
 - Economic viability
 - Ship & Cargo owner
 - Emission taxation
Renewable Fuel Options

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Gas Oil (reference)</td>
<td>42.8</td>
<td>36.6</td>
<td>Not applicable</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Liquid Methane</td>
<td>50.0</td>
<td>23.4</td>
<td>2.3</td>
<td>1</td>
<td>-162</td>
</tr>
<tr>
<td>Ethanol</td>
<td>26.7</td>
<td>21.1</td>
<td>3.6</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Methanol</td>
<td>19.9</td>
<td>15.8</td>
<td>2.6</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Liquid Ammonia</td>
<td>18.6</td>
<td>12.7</td>
<td>1.8</td>
<td>1 or 10</td>
<td>-34 or 20</td>
</tr>
<tr>
<td>Liquid Hydrogen</td>
<td>120.0</td>
<td>8.5</td>
<td>1.8</td>
<td>1</td>
<td>-253</td>
</tr>
<tr>
<td>Compressed Hydrogen</td>
<td>120.0</td>
<td>7.5</td>
<td>1.7</td>
<td>700</td>
<td>20</td>
</tr>
</tbody>
</table>

- Ammonia balanced solution
 - Volumetric energy density
 - Renewable synthetic production cost
Marine Power Generation

- Large scale
- Marine environment
- Dynamic behaviour/Load response
 - Experience natural gas
- Part load conditions
- Fuel direct & Fuel electric configurations
- Size, Mass, Efficiency and Emissions
Ammonia Power Generation

- **Steam Turbine**
 - Ammonia
 - Ammonia dual-fuel

- **Gas Turbine**
 - Ammonia
 - Ammonia dual-fuel

- **Internal Combustion Engine**
 - Compression ignition
 - Spark ignition
 - Proton Exchange Membrane
 - Hydrogen (Cracking & Purification)

- **Fuel Cell**
 - Alkaline
 - Solid Oxide
 - Hydrogen (Cracking)

- **Proton Exchange Membrane**
 - Ammonia

- **Hydrogen (Cracking & Purification)**
 - Ammonia dual-fuel

- **Alkaline**
 - Ammonia dual-fuel

- **Solid Oxide**
 - Ammonia