Development of Catalytic Reactors and Solid Oxide Fuel Cells Systems for Utilization of Ammonia Koichi Eguchi (Kyoto University), Yosuke Takahashi (Noritake Co., Ltd), Hayahide Yamasaki (Nippon Shokubai), Hidehito Kubo (Toyota Industries), Akihiro Okabe (Mitsui Chemical), Takenori Isomura (Tokuyama), Takahiro Matsuo (IHI) > **AICHE 2018 Pittsburgh November 01, 2018** ### Hydrogen carrier & energy conversion technology Kyoto Univ. #### ➤ Ammonia as a promising hydrogen carrier: High H_2 density, Carbon-free, Low production cost, High boiling point, Ease in liquefaction and transportation, etc. | | H ₂ density (kg-H ₂ / m³-liq _.) | Boiling point (°C) | ΔH _r (kJ/mol-H ₂) | |---|---|--------------------|--| | Liquid H ₂ | 70.8 | -252.6 | - | | NH_3 | 120.3 | -33.3 | 30.6 $2NH_3 \rightarrow N_2 + 3H_2$ | | C ₇ H ₁₄
(Methylcyclohexane) | 47.1 | 101.1 | 80.0 $C_7H_{14} \rightarrow C_7H_8 + 3H_2$ | Fig. Operating temperature ranges of fuel cells and catalytic reformers # Operation type of ammonia fueled SOFC R: NH₃ decomposition reactor, C:Fuel cell chamber, S:SOFC stack - NH₃ decomp. reactor installed on the flow line - Optimized operation of each reactor - > Large energy loss - > Large system size - > Stationary application - Reactor installed in the FC chamber - System design with effective heat management - Either stationary or mobile application - ➤ NH₃ decomp. reactor unnecessary - ➤ NH₃decomp. And anode reaction proceed on the electrode - Simplified system - Multifunctional electrode - > Heat management - Either stationary or mobile application # Development of 1kW generation package ### **System specification & flow diagram** | Term | Specification | | |------------------|--|--| | Fuel /
Supply | Steady condition Direct Supply of ammonia (100%) without cracker | | | Heat
output | None (electricity only) | | | Output | DC (without inverter) | | | Operation | Automatic control | | | Start-up | Heating with cathode gas with air preheater | | ### **Design of system** System package CAD model BOP: MFC, Blower ### **Summary** Ammonia-fueled SOFC stack with 1 kW power output has been successfully operated and high DC efficiency over 50% LHV. Stability of the stack has been improved by introducing ammonia pre-cracking catalyst and surface treatment of metal separators. Automated 1 kW-class SOFC package has been successfully operated. Auto-thermal ammonia cracker has been developed for start-up of the SOFC systems. ### Dfnqrz dngjp hqw This work was supported by the Council for Science, Technology and Innovation (CSTI) Cross-ministerial Strategic Innovation Promotion Program (SIP) "energy carrier" (Funding agency: JST).