

Koichi Eguchi (Kyoto University),

Yosuke Takahashi (Noritake), Hayahide Yamasaki (Nippon Shokubai), Hidehito Kubo (Toyota Industries), Akihiro Okabe (Mitsui Chemical), Takenori Isomura (Tokuyama), Takahiro Matsuo (IHI)

NH3 Energy+ - Enabling Optimized, Sustainable Energy and Agriculture AIChE Minneapolis, USA November 01, 2017,

Ammonia as Hydrogen Carrier

Utilization of renewable energy

Hydrogen

- Primary fuel source for fuel cell
- $\checkmark\,$ Low volume density
- ✓ Difficulty in storage and transportation

Ammonia

- ✓ High H_2 density
- ✓ Carbon-free
- ✓ High boiling point
- ✓ Ease in liquefaction and transportation
- ✓ Hydrogen production via decomposition reaction

$$NH_3 \rightarrow \frac{3}{2}H_2 + \frac{1}{2}N_2$$
$$\Delta H^0 = +46 \text{ kJ mol}^{-1}$$

Consumption of fuels

Table H_2 density and boiling point of liquid H_2 , NH_3 , and C_7H_{14} (Methylcyclohexane)

	H ₂ density (kg-H ₂ / m ³ -liq _.)	Boiling point (°C)
Liquid H ₂	70.8	-252.6
NH ₃	120.3	-33.3
C ₇ H ₁₄ (Methylcyclohexane)	47.1	101.1

comparison of generation efficiency

PEFC: Polymer Electrolyte Fuel Cell **GT**: Gas Turbine **ST**: Steam Turbine

Hydrogen-fueled SOFC

Direct ammonia-fueled SOFC

Hydrogen carrier & energy conversion technology

➤Ammonia as a promising hydrogen carrier:

High H_2 density, Carbon-free, Low production cost, High boiling point, Ease in liquefaction and transportation, etc.

Fig. Operating temperature ranges of fuel cells and catalytic reformers

Kyoto Univ.

Operation type of ammonia fueled cell

R: NH₃ decomposition reactor, C:Fuel cell chamber, S:SOFC stack

- NH₃ decomp. reactor installed on the flow line
- Optimized operation of each reactor
- Large energy loss
- Large system size
- Stationary application

 NH_3

- Reactor installed in the FC chamber
- System design with effective heat management
- Either stationary or mobile application

- NH₃ decomp. reactor unnecessary
- NH₃decomp. And anode reaction proceed on the electrode
- Simplified system
- Multifunctional electrode
- Heat management
- Either stationary or mobile application

Durability of Catalyst for NH₃ Cracking

 Catalyst:
 $5wt.\% SrO-40wt.\% Ni/Y_2O_3$ (Pretreated at 600°C in 50%H_2/Ar)

 Supply gas:
 $100\% NH_3$; Space velocity = 2,400 h⁻¹

 Durability test:
 700°C

 Activity evaluation:
 515°C, 565°C

Fig. Time course of ammonia conversion at 515 and 565°C for the SrO–Ni/Y₂O₃ catalyst under the stability test at 700°C with an S.V. of 2,400 h⁻¹.

Ammonia-fueled Solid Oxide Fuel Cell System

It is important to develop the catalyst and control the reaction conditions !!

Ammonia-fueled Solid Oxide Fuel Cell System

Cell & Material

Table Configuration of the anode-supported cell

Layer	Composition	Thickness / µm	Diameter / mm
Anode support layer	NiO/ZrO ₂ -based material	1000–1100	120
Anode functional layer	NiO/ZrO ₂ -based material	7–13	120
Electrolyte layer	ZrO ₂ -based material	7–13	120
Cathode layer	Perovskite-type oxide material	30–90	110

Performance of NH₃-fueled SOFC Stack with 10 single cells

Fig. I-V and I-P characteristics of the SOFC stack at 770°C. Anode gas: 75% H₂–25% N₂, NH₃, cracked NH₃, and autothermally cracked NH₃; Cathode gas: Air.

Summary

- ✓ The rapid start-up less than 130 sec was possible with the autothermal NH₃ cracker.
- ✓ The SOFC stack with 30 single cells fueled with NH₃ exhibited 1 kW power at ca. 750°C.
- ✓ The DC generation efficiency of 1 kW class SOFC stack was 50% or higher.

Acknowledgment

This work was supported by the Council for Science, Technology and Innovation (CSTI) Cross-ministerial Strategic Innovation Promotion Program (SIP) "energy carrier" (Funding agency: JST).